Tailoring Na+ Solvation Environment and Electrode-Electrolyte Interphases with Sn(OTf)2 Additive in Non-flammable Phosphate Electrolytes towards Safe and Efficient Na-S Batteries
Lifeng Wang
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Conceptualization (lead), Writing - original draft (lead)
Search for more papers by this authorNaiqing Ren
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Data curation (lead)
Search for more papers by this authorDr. Wei Jiang
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Hai Yang
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Investigation (lead)
Search for more papers by this authorDr. Shufen Ye
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Yang Jiang
Jiujiang DeFu Technology Co. Ltd, Jiujiang, Jiangxi, 332000 China
Contribution: Supervision (lead)
Search for more papers by this authorProf. Ghulam Ali
Advanced Energy Materials & System Lab (Principal Investigator), U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad, 44080 Pakistan
Contribution: Software (lead)
Search for more papers by this authorProf. Li Song
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Validation (lead)
Search for more papers by this authorProf. Xiaojun Wu
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Visualization (lead)
Search for more papers by this authorProf. Xianhong Rui
Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Contribution: Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Dr. Yu Yao
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Project administration (lead)
Search for more papers by this authorCorresponding Author
Prof. Yan Yu
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Conceptualization (lead), Writing - review & editing (lead)
Search for more papers by this authorLifeng Wang
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Conceptualization (lead), Writing - original draft (lead)
Search for more papers by this authorNaiqing Ren
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Data curation (lead)
Search for more papers by this authorDr. Wei Jiang
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Hai Yang
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Investigation (lead)
Search for more papers by this authorDr. Shufen Ye
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Formal analysis (lead)
Search for more papers by this authorDr. Yang Jiang
Jiujiang DeFu Technology Co. Ltd, Jiujiang, Jiangxi, 332000 China
Contribution: Supervision (lead)
Search for more papers by this authorProf. Ghulam Ali
Advanced Energy Materials & System Lab (Principal Investigator), U.S.-Pakistan Center for Advanced Studies in Energy, National University of Sciences and Technology, Islamabad, 44080 Pakistan
Contribution: Software (lead)
Search for more papers by this authorProf. Li Song
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui, 230029 China
Contribution: Validation (lead)
Search for more papers by this authorProf. Xiaojun Wu
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Visualization (lead)
Search for more papers by this authorProf. Xianhong Rui
Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006 China
Contribution: Writing - original draft (lead)
Search for more papers by this authorCorresponding Author
Dr. Yu Yao
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Project administration (lead)
Search for more papers by this authorCorresponding Author
Prof. Yan Yu
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026 China
Contribution: Conceptualization (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
A multifunctional additive, tin trifluoromethanesulfonate (Sn(OTf)2), is proposed to engineer a non-flammable triethyl phosphate (TEP)-based electrolyte, aiming to regulate the solvation environment of Na+, facilitate uniform Na deposition, and suppress the shuttling of sodium polysulfides for safe and efficient room-temperature sodium-sulfur (RT Na-S) batteries.
Abstract
Room-temperature sodium-sulfur (RT Na-S) batteries are promising for low-cost and large-scale energy storage applications. However, these batteries are plagued by safety concerns due to the highly flammable nature of conventional electrolytes. Although non-flammable electrolytes eliminate the risk of fire, they often result in compromised battery performance due to poor compatibility with sodium metal anode and sulfur cathode. Herein, we develop an additive of tin trifluoromethanesulfonate (Sn(OTf)2) in non-flammable phosphate electrolytes to improve the cycling stability of RT Na-S batteries via modulating the Na+ solvation environment and interface chemistry. The additive reduces the Na+ desolvation energy and enhances the electrolyte stability. Moreover, it facilitates the construction of Na-Sn alloy-based anode solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI). These interphases help to suppress the growth of Na dendrites and the dissolution/shuttling of sodium polysulfides (NaPSs), resulting in improved reversible capacity. Specifically, the Na-S battery with the designed electrolyte boosts the capacity from 322 to 906 mAh g−1 at 0.5 A g−1. This study provides valuable insights for the development of safe and high-performance electrolytes in RT Na-S batteries.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202320060-sup-0001-misc_information.pdf2.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aB. Dunn, H. Kamath, J. M. Tarascon, Science 2011, 334, 928–935;
- 1bZ. Hu, Q. Liu, S. L. Chou, S. X. Dou, Adv. Mater. 2017, 29, 1700606;
- 1cJ. Y. Hwang, S. T. Myung, Y. K. Sun, Chem. Soc. Rev. 2017, 46, 3529–3614;
- 1dS. Zhang, Y. Yao, Y. Yu, ACS Energy Lett. 2021, 6, 529–536;
- 1eX. Xu, D. Zhou, X. Qin, K. Lin, F. Kang, B. Li, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Nat. Commun. 2018, 9, 3870.
- 2
- 2aR. Bai, Q. Lin, X. Li, F. Ling, H. Wang, S. Tan, L. Hu, M. Ma, X. Wu, Y. Shao, X. Rui, E. Hu, Y. Yao, Y. Yu, Angew. Chem. Int. Ed. 2023, 62, e202218165;
- 2bE. Zhang, X. Hu, L. Meng, M. Qiu, J. Chen, Y. Liu, G. Liu, Z. Zhuang, X. Zheng, L. Zheng, Y. Wang, W. Tang, Z. Lu, J. Zhang, Z. Wen, D. Wang, Y. Li, J. Am. Chem. Soc. 2022, 144, 18995–19007.
- 3J. Wang, F. Lin, H. Jia, J. Yang, C. W. Monroe, Y. NuLi, Angew. Chem. Int. Ed. 2014, 53, 10099–10104.
- 4P. Jaumaux, J. R. Wu, D. Shanmukaraj, Y. Z. Wang, D. Zhou, B. Sun, F. Y. Kang, B. H. Li, M. Armand, G. X. Wang, Adv. Funct. Mater. 2021, 31, 2008644.
- 5
- 5aB. Lee, E. Paek, D. Mitlin, S. W. Lee, Chem. Rev. 2019, 119, 5416–5460;
- 5bX. Zheng, L. Huang, X. Ye, J. Zhang, F. Min, W. Luo, Y. Huang, Chem 2021, 7, 2312–2346;
- 5cY. X. Zhu, M. Y. Ge, F. C. Ma, Q. H. Wang, P. Huang, C. Lai, Adv. Funct. Mater. 2023, 34, 2301964;
- 5dC. Bao, B. Wang, P. Liu, H. Wu, Y. Zhou, D. Wang, H. Liu, S. Dou, Adv. Funct. Mater. 2020, 30, 2004891;
- 5eS. Yuan, K. Ding, X. Zeng, D. Bin, Y. Zhang, P. Dong, Y. Wang, Adv. Mater. 2022, 35, e2206228.
- 6Y. Z. Wang, D. Zhou, V. Palomares, D. Shanmukaraj, B. Sun, X. Tang, C. S. Wang, M. Armand, T. Rojo, G. X. Wang, Energy Environ. Sci. 2020, 13, 3848–3879.
- 7X. M. Zhao, Y. W. Yan, X. X. Ren, L. Chen, S. D. Xu, S. B. Liu, X. M. Wang, D. Zhang, ChemElectroChem 2019, 6, 1229–1234.
- 8
- 8aJ. Wu, J. Liu, Z. Lu, K. Lin, Y.-Q. Lyu, B. Li, F. Ciucci, J.-K. Kim, Energy Storage Mater. 2019, 23, 8–16;
- 8bJ. Wu, Y. Tian, Y. Gao, Z. Gao, Y. Meng, Y. Wang, X. Wang, D. Zhou, F. Kang, B. Li, G. Wang, Angew. Chem. Int. Ed. 2022, 61, e202205416;
- 8cH. Yang, J. Chen, J. Yang, J. Wang, Angew. Chem. Int. Ed. 2020, 59, 7306–7318.
- 9
- 9aG. Jiang, J. Liu, Z. Wang, J. Ma, Adv. Funct. Mater. 2023, 33, 2300629;
- 9bH. Yang, C. Guo, J. Chen, A. Naveed, J. Yang, Y. Nuli, J. Wang, Angew. Chem. Int. Ed. 2019, 58, 791–795;
- 9cZ. Zeng, V. Murugesan, K. S. Han, X. Jiang, Y. Cao, L. Xiao, X. Ai, H. Yang, J.-G. Zhang, M. L. Sushko, J. Liu, Nat. Energy 2018, 3, 674–681.
- 10
- 10aY. Zou, Z. Ma, G. Liu, Q. Li, D. Yin, X. Shi, Z. Cao, Z. Tian, H. Kim, Y. Guo, C. Sun, L. Cavallo, L. Wang, H. N. Alshareef, Y. K. Sun, J. Ming, Angew. Chem. Int. Ed. 2022, 62, e202216189;
- 10bJ. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. Yamada, Nat. Energy 2017, 3, 22–29.
- 11Y. Ma, B. Qin, X. Du, G. Xu, D. Wang, J. Wang, J. Zhang, J. Zhao, Z. Su, G. Cui, ACS Appl. Mater. Interfaces 2022, 14, 17444–17453.
- 12X. Liu, X. Zheng, Y. Dai, W. Wu, Y. Huang, H. Fu, Y. Huang, W. Luo, Adv. Funct. Mater. 2021, 31, 2103522.
- 13D. Guo, J. Wang, T. Lai, G. Henkelman, A. Manthiram, Adv. Mater. 2023, 35, e2300841.
- 14
- 14aH. Wang, C. Wang, E. Matios, W. Li, Angew. Chem. Int. Ed. 2018, 57, 7734–7737;
- 14bM. Moorthy, B. Moorthy, B. K. Ganesan, A. Saha, S. Yu, D. H. Kim, S. Hong, S. Park, K. Kang, R. Thangavel, Y. S. Lee, Adv. Funct. Mater. 2023, 33, 2300135.
- 15X. Ye, J. Ruan, Y. Pang, J. Yang, Y. Liu, Y. Huang, S. Zheng, ACS Nano 2021, 15, 5639–5648.
- 16B. Han, Y. Zou, Z. Zhang, X. Yang, X. Shi, H. Meng, H. Wang, K. Xu, Y. Deng, M. Gu, Nat. Commun. 2021, 12, 3066.
- 17L. Wang, N. Ren, Y. Yao, H. Yang, W. Jiang, Z. He, Y. Jiang, S. Jiao, L. Song, X. Wu, Z. S. Wu, Y. Yu, Angew. Chem. Int. Ed. 2023, 62, e202214372.
- 18
- 18aC. Wang, A. C. Thenuwara, J. Luo, P. P. Shetty, M. T. McDowell, H. Zhu, S. Posada-Perez, H. Xiong, G. Hautier, W. Li, Nat. Commun. 2022, 13, 4934;
- 18bH. Wang, C. Zhu, J. Liu, S. Qi, M. Wu, J. Huang, D. Wu, J. Ma, Angew. Chem. Int. Ed. 2022, 61, e202208506.
- 19Y. Dong, N. Zhang, C. Li, Y. Zhang, M. Jia, Y. Wang, Y. Zhao, L. Jiao, F. Cheng, J. Xu, ACS Appl. Energ. Mater. 2019, 2, 2708–2716.
- 20Y. H. Yujie Yang, Y. Zhang, C. Huang, B. Yao, Y. Qian, G. Chang, Z. Liu, Q. Tang, A. Hu, X. Chen, Chem. Eng. J. 2023, 476, 146728.
- 21
- 21aB. Thirumalraj, T. T. Hagos, C. J. Huang, M. A. Teshager, J. H. Cheng, W. N. Su, B. J. Hwang, J. Am. Chem. Soc. 2019, 141, 18612–18623;
- 21bS. Chen, J. Chen, X. Liao, Y. Li, W. Wang, R. Huang, T. Zhao, S. Yan, Z. Yan, F. Cheng, H. Wang, ACS Energy Lett. 2022, 7, 4028–4035.
- 22
- 22aD. Aurbach, Y. Gofer, J. Electrochem. Soc. 1989, 136, 3198–3205;
- 22bB. D. Adams, J. Zheng, X. Ren, W. Xu, J. G. Zhang, Adv. Energy Mater. 2017, 8, 1702097.
- 23
- 23aX. Zheng, Z. Gu, J. Fu, H. Wang, X. Ye, L. Huang, X. Liu, X. Wu, W. Luo, Y. Huang, Energy Environ. Sci. 2021, 14, 4936–4947;
- 23bH. Huang, Y. Wang, M. Li, H. Yang, Z. Chen, Y. Jiang, S. Ye, Y. Yang, S. He, H. Pan, X. Wu, Y. Yao, M. Gu, Y. Yu, Adv. Mater. 2023, 35, e2210826.
- 24
- 24aP. Shi, S. Zhang, G. Lu, L. Wang, Y. Jiang, F. Liu, Y. Yao, H. Yang, M. Ma, S. Ye, X. Tao, Y. Feng, X. Wu, X. Rui, Y. Yu, Adv. Energy Mater. 2020, 11, 2003381;
- 24bX. Zhou, Q. Zhang, Z. Zhu, Y. Cai, H. Li, F. Li, Angew. Chem. Int. Ed. 2022, 61, e202205045.
- 25C. Wang, Z. Sun, L. Liu, H. Ni, Q. Hou, J. Fan, R. Yuan, M. Zheng, Q. Dong, Energy Environ. Sci. 2023, 16, 3098–3109.
- 26
- 26aD. Zhou, Y. Chen, B. Li, H. Fan, F. Cheng, D. Shanmukaraj, T. Rojo, M. Armand, G. Wang, Angew. Chem. Int. Ed. 2018, 57, 10168–10172;
- 26bF. Xiao, X. Yang, H. Wang, J. Xu, Y. Liu, D. Y. W. Yu, A. L. Rogach, Adv. Energy Mater. 2020, 10, 2000931;
- 26cN. Wang, Y. Wang, Z. Bai, Z. Fang, X. Zhang, Z. Xu, Y. Ding, X. Xu, Y. Du, S. Dou, G. Yu, Energy Environ. Sci. 2020, 13, 562–570;
- 26dA. Kumar, A. Ghosh, M. Forsyth, D. R. MacFarlane, S. Mitra, ACS Energy Lett. 2020, 5, 2112–2121;
- 26eS. Wei, S. Xu, A. Agrawral, S. Choudhury, Y. Lu, Z. Tu, L. Ma, L. A. Archer, Nat. Commun. 2016, 7, 11722;
- 26fS. Zhang, Y. Yao, X. Jiao, M. Ma, H. Huang, X. Zhou, L. Wang, J. Bai, Y. Yu, Adv. Mater. 2021, 33, e2103846;
- 26gD. Li, B. Gong, X. Cheng, F. Ling, L. Zhao, Y. Yao, M. Ma, Y. Jiang, Y. Shao, X. Rui, W. Zhang, H. Zheng, J. Wang, C. Ma, Q. Zhang, Y. Yu, ACS Nano 2021, 15, 20607–20618;
- 26hL. Wang, H. Wang, S. Zhang, N. Ren, Y. Wu, L. Wu, X. Zhou, Y. Yao, X. Wu, Y. Yu, ACS Nano 2021, 15, 15218–15228;
- 26iG. Xia, L. Zhang, X. Chen, Y. Huang, D. Sun, F. Fang, Z. Guo, X. Yu, Energy Storage Mater. 2018, 14, 314–323;
- 26jD. Zhao, S. Ge-Zhang, Z. Zhang, H. Tang, Y. Xu, F. Gao, X. Xu, S. Liu, J. Zhou, Z. Wang, Y. Wu, X. Liu, Y. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 54662–54669;
- 26kP. Hu, F. Xiao, Y. Wu, X. Yang, N. Li, H. Wang, J. Jia, Chem. Eng. J. 2022, 443, 136257;
- 26lJ. Luo, K. Wang, Y. Qian, P. Wang, H. Yuan, O. Sheng, B. Li, H. Wang, Y. Wang, Y. Liu, J. Nai, X. Tao, W. Li, Nano Energy 2023, 118, 108958;
- 26mG. Yao, Z. Q. Li, Y. H. Zhang, Y. Xiao, L. Z. Wei, H. L. Niu, Q. W. Chen, Y. Yang, F. C. Zheng, Adv. Funct. Mater. 2023, 34, 2214353.
- 27J. He, A. Bhargav, L. Su, H. Charalambous, A. Manthiram, Nat. Commun. 2023, 14, 6568.