Supramolecular Complexation of Metal Oxide Cluster and Non-Fluorinated Polymer for Large-Scale Fabrication of Proton Exchange Membranes for High-Power-Density Fuel Cells
Lu Liu
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorAowen Huang
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDr. Junsheng Yang
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJiadong Chen
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorKewen Fu
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorWeigang Sun
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJie Deng
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDr. Jia-Fu Yin
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Panchao Yin
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorLu Liu
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorAowen Huang
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDr. Junsheng Yang
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJiadong Chen
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorKewen Fu
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorWeigang Sun
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorJie Deng
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorDr. Jia-Fu Yin
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Panchao Yin
State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, Guangdong Basic Research Center of Excellence for Energy & Information Polymer Materials, South China University of Technology, Guangzhou, 510641 P. R. China
Search for more papers by this authorGraphical Abstract
The facile and cost-effective hybridization strategy for proton exchange membranes (PEMs) design by blending 1 nm metal oxide clusters and polyvinyl butyral. The fuel cells equipped with the PEM show promising power densities and excellent durability that is on par with Nafion® and surpass the previously reported non-fluorinated PEMs.
Abstract
Cost-effective, non-fluorinated polymer proton exchange membranes (PEMs) are highly desirable in emerging hydrogen fuel cells (FCs) technology; however, their low proton conductivities and poor chemical and dimension stabilities hinder their further development as alternatives to commercial Nafion®. Here, we report the inorganic-organic hybridization strategy by facilely complexing commercial polymers, polyvinyl butyral (PVB), with inorganic molecular nanoparticles, H3PW12O40 (PW) via supramolecular interaction. The strong affinity among them endows the obtained nanocomposites amphiphilicity and further lead to phase separation for bi-continuous structures with both inter-connected proton transportation channels and robust polymer scaffold, enabling high proton conductivities, mechanical/dimension stability and barrier performance, and the H2/O2 FCs equipped with the composite PEM show promising power densities and long-term stability. Interestingly, the hybrid PEM can be fabricated continuously in large scale at challenging ~10 μm thickness via typical tape casting technique originated from their facile complexing strategy and the hybrids’ excellent mechanical properties. This work not only provides potential material systems for commercial PEMs, but also raises interest for the research on hybrid composites for PEMs.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202318355-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. Jiao, J. Xuan, Q. Du, Z. Bao, B. Xie, B. Wang, Y. Zhao, L. Fan, H. Wang, Z. Hou, S. Huo, N. P. Brandon, Y. Yin, M. D. Guiver, Nature 2021, 595, 361;
- 1bM. K. Debe, Nature 2012, 486, 43.
- 2
- 2aH. Tang, K. Geng, L. Wu, J. Liu, Z. Chen, W. You, F. Yan, M. D. Guiver, N. Li, Nat. Energy 2022, 7, 153;
- 2bC. H. Park, S. Y. Lee, D. S. Hwang, D. W. Shin, D. H. Cho, K. H. Lee, T.-W. Kim, T.-W. Kim, M. Lee, D.-S. Kim, C. M. Doherty, A. W. Thornton, A. J. Hill, M. D. Guiver, Y. M. Lee, Nature 2016, 532, 480.
- 3
- 3aK. A. Mauritz, R. B. Moore, Chem. Rev. 2004, 104, 4535;
- 3bA. Kusoglu, A. Z. Weber, Chem. Rev. 2017, 117, 987.
- 4
- 4aK. Schmidt-Rohr, Q. Chen, Nat. Mater. 2008, 7, 75;
- 4bP. Guan, Y. Zou, M. Zhang, W. Zhong, J. Xu, J. Lei, H. Ding, W. Feng, F. Liu, Y. Zhang, Sci. Adv. 2023, 9, eadh1386.
- 5
- 5aY. Zhao, J. Wang, X.-Y. Kong, W. Xin, T. Zhou, Y. Qian, L. Yang, J. Pang, L. Jiang, L. Wen, Nat. Sci. Rev. 2020, 7, 1349;
- 5bG. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver, Z. Jiang, Adv. Mater. 2015, 27, 5280;
- 5cH. Zhang, P. K. Shen, Chem. Soc. Rev. 2012, 41, 2382;
- 5dS. Moghaddam, E. Pengwang, Y.-B. Jiang, A. R. Garcia, D. J. Burnett, C. J. Brinker, R. I. Masel, M. A. Shannon, Nat. Nanotechnol. 2010, 5, 230;
- 5eN. Esmaeili, E. M. Gray, C. J. Webb, ChemPhysChem 2019, 20, 2016.
- 6
- 6aP. Zuo, C. Ye, Z. Jiao, J. Luo, J. Fang, U. S. Schubert, N. B. McKeown, T. L. Liu, Z. Yang, T. Xu, Nature 2023, 617, 299;
- 6bR. Haider, Y. Wen, Z.-F. Ma, D. P. Wilkinson, L. Zhang, X. Yuan, S. Song, J. Zhang, Chem. Soc. Rev. 2021, 50, 1138;
- 6cL. Cai, J. Yang, Y. Lai, Y. Liang, R. Zhang, C. Gu, S. Kitagawa, P. Yin, Angew. Chem. Int. Ed. 2023, 62, e202211741;
- 6dC. Huang, W. Zhang, W. Zheng, Energy Storage Mater. 2023, 61, 102913;
- 6eD. Cheng, K. Li, H. Zang, J. Chen, Energy Environ. Mater. 2023, 6, e12341.
- 7R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E. W. Zhao, T. Liu, C. Ye, X. Zhou, B. P. Darwich, Z. Fan, L. Turcani, E. Jackson, L. Chen, S. Y. Chong, T. Li, K. E. Jelfs, A. I. Cooper, N. P. Brandon, C. P. Grey, N. B. McKeown, Q. Song, Nat. Mater. 2020, 19, 195.
- 8W. Yu, Z. Ge, K. Zhang, X. Liang, X. Ge, H. Wang, M. Li, X. Shen, Y. Xu, L. Wu, T. Xu, Ind. Eng. Chem. Res. 2022, 61, 4329.
- 9
- 9aE. B. Trigg, T. W. Gaines, M. Maréchal, D. E. Moed, P. Rannou, K. B. Wagener, M. J. Stevens, K. I. Winey, Nat. Mater. 2018, 17, 725;
- 9bM. W. Schulze, L. D. McIntosh, M. A. Hillmyer, T. P. Lodge, Nano Lett. 2014, 14, 122;
- 9cH. Han, H. Miura, Y. Motoishi, N. Tanaka, T. Fujigaya, Polym. J. 2021, 53, 1403;
- 9dL. Yan, C. Rank, S. Mecking, K. I. Winey, J. Am. Chem. Soc. 2020, 142, 857;
- 9eC. Li, Q. Li, Y. V. Kaneti, D. Hou, Y. Yamauchi, Y. Mai, Chem. Soc. Rev. 2020, 49, 4681;
- 9fG. Wang, J. Li, L. Shang, H. He, T. Cui, S. Chai, C. Zhao, L. Wu, H. Li, CCS Chem. 2022, 4, 151;
- 9gM. Zeng, W. Liu, H. Guo, T. Li, Q. Li, C. Zhao, X. Li, H. Li, ACS Appl. Energ. Mater. 2022, 5, 9058;
- 9hS. Chai, F. Xu, R. Zhang, X. Wang, L. Zhai, X. Li, H.-J. Qian, L. Wu, H. Li, J. Am. Chem. Soc. 2021, 143, 21433;
- 9iL. Liu, Z. Wu, Z. Zheng, Q. Zhou, K. Chen, P. Yin, Chin. Chem. Lett. 2022, 33, 4326;
- 9jL. Zhang, T. Cui, X. Cao, C. Zhao, Q. Chen, L. Wu, H. Li, Angew. Chem. Int. Ed. 2017, 56, 9013.
- 10
- 10aD.-L. Long, R. Tsunashima, L. Cronin, Angew. Chem. Int. Ed. 2010, 49, 1736;
- 10bA. Misra, K. Kozma, C. Streb, M. Nyman, Angew. Chem. Int. Ed. 2020, 59, 596.
- 11
- 11aM. Hajian, G. A. Koohmareh, M. Rastgoo, J. Appl. Polym. Sci. 2010, 115, 3592;
- 11bX. Lin, K. Wang, B. Zhou, G. Luo, Chem. Eng. J. 2020, 383, 123181.
- 12Y. Zhao, K. Yoshimura, T. Motegi, A. Hiroki, A. Radulescu, Y. Maekawa, Macromolecules 2021, 54, 4128.
- 13
- 13aP. Tölle, C. Köhler, R. Marschall, M. Sharifi, M. Wark, T. Frauenheim, Chem. Soc. Rev. 2012, 41, 5143;
- 13bK.-D. Kreuer, Chem. Mater. 1996, 8, 610.
- 14
- 14aF. Chen, S. Chen, A. Wang, M. Wang, L. Guo, Z. Wei, Nat. Catal. 2023, 6, 392;
- 14bX. Tian, X. Zhao, Y.-Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E. J. M. Hensen, X. W. Lou, B. Y. Xia, Science 2019, 366, 850;
- 14cQ. Meyer, Y. Zeng, C. Zhao, Adv. Mater. 2019, 31, 1901900.
- 15A. R. Motz, M.-C. Kuo, J. L. Horan, R. Yadav, S. Seifert, T. P. Pandey, S. Galioto, Y. Yang, N. V. Dale, S. J. Hamrock, A. M. Herring, Energy Environ. Sci. 2018, 11, 1499.