Stress Dissipation Driven by Multi-Interface Built-In Electric Fields and Desert-Rose-Like Structure for Ultrafast and Superior Long-Term Sodium Ion Storage
Jinhang Li
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorHuiying Yu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Software (lead)
Search for more papers by this authorCorresponding Author
Dr. Yingying Zhao
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Kai Zhu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Software (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Chunling Zhu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Funding acquisition (lead), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Jing Ren
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Shulei Chou
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035 China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Yujin Chen
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Funding acquisition (lead), Project administration (lead), Resources (lead), Writing - review & editing (lead)
Search for more papers by this authorJinhang Li
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Visualization (lead), Writing - original draft (lead)
Search for more papers by this authorHuiying Yu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Software (lead)
Search for more papers by this authorCorresponding Author
Dr. Yingying Zhao
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Kai Zhu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Software (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Chunling Zhu
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Funding acquisition (lead), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorProf. Jing Ren
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Shulei Chou
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035 China
Contribution: Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Prof. Yujin Chen
Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001 China
Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001 China
Contribution: Funding acquisition (lead), Project administration (lead), Resources (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
A stress dissipation strategy driven by multi-interface BEFs and architected structure, is proposed to achieve compatibility between fast kinetics and structural stability in an anode. Based on this strategy, desert-rose-like HMI-MFS NRs with multiple interfaces and a staggered cantilever configuration at micro- and macro-scales are fabricated, which display ultrafast and superior long-term sodium ion storage in half/full SIBs.
Abstract
The kinetics and durability of conversion-based anodes greatly depend on the intrinsic stress regulating ability of the electrode materials, which has been significantly neglected. Herein, a stress dissipation strategy driven by multi-interface built-in electric fields (BEFs) and architected structure, is innovatively proposed to design ultrafast and long-term sodium ion storage anodes. Binary Mo/Fe sulfide heterostructured nanorods with multi-interface BEFs and staggered cantilever configuration are fabricated to prove our concept. Multi-physics simulations and experimental results confirm that the inner stress in multiple directions can be dissipated by the multi-interface BEFs at the micro-scale, and by the staggered cantilever structure at the macro-scale, respectively. As a result, our designed heterostructured nanorods anode exhibits superb rate capability (332.8 mAh g−1 at 10.0 A g−1) and durable cyclic stability over 900 cycles at 5.0 A g−1, outperforming other metal chalcogenides. This proposed stress dissipation strategy offers a new insight for developing stable structures for conversion-based anodes.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202318000-sup-0001-misc_information.pdf3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Chem. Soc. Rev. 2017, 46, 3529–3614;
- 1bP. K. Nayak, L. Yang, W. Brehm, P. Adelhelm, Angew. Chem. Int. Ed. 2018, 57, 102–120;
- 1cY. Li, F. Wu, Y. Li, M. Liu, X. Feng, Y. Bai, C. Wu, Chem. Soc. Rev. 2022, 51, 4484–4536.
- 2
- 2aI. El Moctar, Q. Ni, Y. Bai, F. Wu, C. Wu, Funct. Mater. Lett. 2018, 11, 1830003;
- 2bR. Dong, F. Wu, Y. Bai, Q. Li, X. Yu, Y. Li, Q. Ni, C. Wu, Energy Mater. Adv. 2022, 2022, 9896218.
- 3Z. Hu, Q. Liu, S.-L. Chou, S.-X. Dou, Adv. Mater. 2017, 29, 1700606.
- 4S. Qiao, Q. Zhou, M. Ma, H. K. Liu, S. X. Dou, S. Chong, ACS Nano 2023, 17, 11220–11252.
- 5C. Wang, H. Qin, L. Cao, D. Wang, J. Zhang, B. Zhang, X. Ou, Chem. Eng. J. 2022, 427, 131963.
- 6C. Wang, D. Wang, X. Ma, H. Qin, M. Liu, Y. Yan, B. Zhang, X. Ou, Adv. Funct. Mater. 2022, 32, 2204687.
- 7M. Ma, S. Zhang, L. Wang, Y. Yao, R. Shao, L. Shen, L. Yu, J. Dai, Y. Jiang, X. Cheng, Y. Wu, X. Wu, X. Yao, Q. Zhang, Y. Yu, Adv. Mater. 2021, 33, 2106232.
- 8
- 8aT. Zheng, P. Hu, Z. Wang, T. Guo, Adv. Mater. 2023, e2306577;
- 8bJ. Sang, X. Zhang, K. Liu, G. Cao, R. Guo, S. Zhang, Z. Wu, Y. Zhang, R. Hou, Y. Shen, G. Shao, Adv. Funct. Mater. 2023, 33, 2211640;
- 8cJ. Rahmatinejad, X. Liu, X. Zhang, B. Raisi, Z. Ye, J. Energy Chem. 2022, 75, 240–249;
- 8dY. Li, F. Wu, Y. Li, X. Feng, L. Zheng, M. Liu, S. Li, J. Qian, Z. Wang, H. Ren, Y. Gong, C. Wu, Y. Bai, Adv. Mater. 2023, 2310270.
- 9S. Wang, S. Zhao, X. Guo, G. Wang, Adv. Energy Mater. 2022, 12, 2100864.
- 10Y. Su, B. Johannessen, S. Zhang, Z. Chen, Q. Gu, G. Li, H. Yan, J.-Y. Li, H.-Y. Hu, Y.-F. Zhu, S. Xu, H. Liu, S. Dou, Y. Xiao, Adv. Mater. 2023, 35, 2305149.
- 11
- 11aS. Guo, Y. Feng, L. Wang, Y. Jiang, Y. Yu, X. Hu, Small 2021, 17, 2005248;
- 11bS. Zhang, F. Ling, L. Wang, R. Xu, M. Ma, X. Cheng, R. Bai, Y. Shao, H. Huang, D. Li, Y. Jiang, X. Rui, J. Bai, Y. Yao, Y. Yu, Adv. Mater. 2022, 34, 2201420;
- 11cR. Zhang, V. Raveendran, Y. He, A. Yau, A. Chang, C. Chi, S. Bong, F. Cheng, W. Ma, J. Chen, Energy Mater. Adv. 2021, 2021, 2124862;
- 11dD. Yan, S. Xiao, X. Li, J. Jiang, Q. He, H. Li, J. Qin, R. Wu, X. Niu, J. S. Chen, Energy Mater. Adv. 2023, 4, 0012.
- 12B. Zhang, B. Xu, Z. Xiao, L. Cao, H. Geng, X. Ou, Energy Storage Mater. 2023, 56, 96–107.
- 13S. Zhou, S. Liu, W. Chen, Y. Cheng, J. Fan, L. Zhao, X. Xiao, Y.-H. Chen, C.-X. Luo, M.-S. Wang, T. Mei, X. Wang, H.-G. Liao, Y. Zhou, L. Huang, S.-G. Sun, ACS Nano 2021, 15, 13814–13825.
- 14
- 14aY. Xiao, Y. Miao, S. Hu, F. Gong, Q. Yu, L. Zhou, S. Chen, Adv. Funct. Mater. 2023, 33, 2210042;
- 14bZ. Sun, H. Liang, H. Wang, J. Shi, M. Huang, J. Chen, S. Liu, W. Tian, H. Cao, Z. Li, Adv. Funct. Mater. 2022, 32, 2203291.
- 15C. Wang, G. Li, H. Qin, Z. Xiao, D. Wang, B. Zhang, X. Ou, Y. Wu, Adv. Energy Mater. 2022, 12, 2200403.
- 16H. Qin, B. Zhang, C. Wang, D. Wang, X. Ou, Energy Storage Mater. 2022, 52, 189–200.
- 17J. Li, Y. Zhang, Y. Mao, Y. Zhao, D. Kan, K. Zhu, S. Chou, X. Zhang, C. Zhu, J. Ren, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202303056.
- 18P. Song, J. Yang, C. Wang, T. Wang, H. Gao, G. Wang, J. Li, Nano-Micro Lett. 2023, 15, 118.
- 19
- 19aM. Hou, Y. Qiu, G. Yan, J. Wang, D. Zhan, X. Liu, J. Gao, L. Lai, Nano Energy 2019, 62, 299–309;
- 19bN. Cheng, X. Chen, Z. Liu, Energy Fuels 2022, 36, 694–702.
- 20W. Li, D. Wang, Z. Gong, Z. Yin, X. Guo, J. Liu, C. Mao, Z. Zhang, G. Li, ACS Nano 2020, 14, 16046–16056.
- 21
- 21aH. Xie, B. Chen, C. Liu, G. Wu, S. Sui, E. Liu, G. Zhou, C. He, W. Hu, N. Zhao, Energy Storage Mater. 2023, 60, 102830;
- 21bY. Zhou, M. Zhang, Q. Han, Y. Liu, Y. Wang, X. Sun, X. Zhang, C. Dong, F. Jiang, Chem. Eng. J. 2022, 428, 131113;
- 21cY. Zhou, M. Zhang, Q. Wang, J. Yang, X. Luo, Y. Li, R. Du, X. Yan, X. Sun, C. Dong, X. Zhang, F. Jiang, Nano Res. 2020, 13, 691–700;
- 21dL. Chen, M. Shen, S.-B. Ren, Y.-X. Chen, W. Li, D.-M. Han, Nanoscale 2021, 13, 9328–9338;
- 21eY. Wang, H. Li, S. Chen, B. Zhai, S. Di, G. Gao, S. Lee, S. Chun, S. Wang, L. Li, Sci. Bull. 2022, 67, 2085–2095;
- 21fB. Cong, X. Li, G. Chen, Chem. Eng. J. 2023, 460, 141713;
- 21gX. Li, T. Liu, Y.-X. Wang, S.-L. Chou, X. Xu, A. Cao, L. Chen, J. Power Sources 2020, 451, 227790;
- 21hS. Sui, H. Xie, M. Liang, B. Chen, C. Liu, E. Liu, B. Chen, L. Ma, J. Sha, N. Zhao, Adv. Funct. Mater. 2022, 32, 2110853;
- 21iX. Xiao, X. Duan, Z. Song, X. Deng, W. Deng, H. Hou, R. Zheng, G. Zou, X. Ji, Adv. Funct. Mater. 2022, 32, 2110476.
- 22
- 22aT. Wang, K. Yao, Y. Hua, E. G. Shankar, R. Shanthappa, J. S. Yu, Chem. Eng. J. 2023, 457, 141363;
- 22bJ. Yuan, B. Yu, D. Pan, X. Hu, J. Chen, M. Aminua, Y. Liu, L. Sheng, Y. Chen, Y. Wu, H. Zhan, Z. Wen, Adv. Funct. Mater. 2023, 2305503;
- 22cA. Wang, W. Hong, L. Li, R. Guo, Y. Xiang, Y. Ye, W. Deng, G. Zou, H. Hou, X. Ji, Energy Storage Mater. 2022, 53, 1–12;
- 22dS. Gao, Y. He, G. Yue, H. Li, S. Li, J. Liu, B. Miao, J. Bai, Z. Cui, N. Wang, Q. Zhang, L. Jiang, Y. Zhao, Carbon Energy 2023, 5, e319;
- 22eP. Song, J. Yang, C. Wang, T. Wang, H. Gao, G. Wang, J. Li, Nano-Micro Lett. 2023, 15, 118;
- 22fS. Zhang, L. Sun, L. Yu, G. Zhai, L. Li, X. Liu, H. Wang, Small 2021, 17, 2103005;
- 22gQ. Xiao, Q. Song, K. Zheng, L. Zheng, Y. Zhu, Z. Chen, Nano Energy 2022, 98, 107326;
- 22hL. Jing, J. Sun, C. Sun, D. Wu, G. Lian, D. Cui, Q. Wang, H. Yu, Nano Res. 2023, 16, 473–480;
- 22iM. Wang, A. Peng, J. Jiang, M. Zeng, Z. Yang, J. Chen, B. Guo, Z. Ma, B. Yu, Y. Zhang, X. Li, Chem. Eng. J. 2022, 433, 134567;
- 22jL. Zhai, J.-M. Yu, J.-P. Yu, W.-W. Xiong, Q. Zhang, ACS Appl. Mater. Interfaces 2022, 14, 49854–49864.
- 23Y. Zhang, J. Wang, L. Shan, B. Han, Q. Gao, Z. Cai, C. Zhou, X. Tian, R. Sun, L. Mai, Adv. Energy Mater. 2023, 2303464.
- 24
- 24aJ. Wang, B. Wang, H. Sun, G. Wang, J. Bai, H. Wang, Energy Storage Mater. 2022, 46, 394–405;
- 24bT. Liu, Y. Yang, S. Cao, R. Xiang, L. Zhang, J. Yu, Adv. Mater. 2023, 35, 2207752;
- 24cJ. Bai, L. Zhang, S. Li, H. Ren, Y. Liu, S. Guo, Chem. Eng. J. 2023, 452, 139111;
- 24dY. R. Pei, H. Y. Zhou, M. Zhao, J. C. Li, X. Ge, W. Zhang, C. C. Yang, Q. Jiang, Carbon Energy 2023, e374;
- 24eJ. Luo, L. Shao, L. Yu, X. Shi, J. Xu, J. Sun, L. Hang, Y. Wu, Z. Sun, Mater. Today Phys. 2023, 35, 101099.
- 25
- 25aC. Wang, N. Cheng, Z. Bai, Q. Gu, F. Niu, X. Xu, J. Zhang, N. Wang, B. Ge, J. Yang, Y. Qian, S. Dou, J. Energy Chem. 2023, 77, 369–375;
- 25bL. Zhang, H. Dong, H. Wei, E. H. Ang, J. Yang, X. Miao, H. Geng, X. Zuo, J. Power Sources 2021, 506, 230216;
- 25cX. Ren, Y. Zhao, Q. Li, F. Cheng, W. Wen, L. Zhang, Y. Huang, X. Xia, X. Li, D. Zhu, K. Huo, R. Tai, J. Mater. Chem. A 2020, 8, 11598–11606;
- 25dJ. Guo, J. Yang, J. Guan, X. Chen, Y. Zhu, H. Fu, Q. Liu, B. Wei, H. Geng, Chem. Eng. J. 2022, 450, 138007;
- 25eB. Wang, X. Miao, H. Dong, X. Ma, J. Wu, Y. Cheng, H. Geng, C. C. Li, J. Mater. Chem. A 2021, 9, 14582–14592.