Flexible Zn-ion Electrochromic Batteries with Multiple-color Variations
Qinbo Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Software (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorXu Ou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorYajuan Niu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting)
Search for more papers by this authorLegeng Li
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting)
Search for more papers by this authorDoudou Xing
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Yingjie Zhou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Conceptualization (equal), Formal analysis (supporting), Funding acquisition (supporting), Project administration (equal), Resources (supporting), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Feng Yan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (equal), Resources (lead), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorQinbo Liu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (lead), Formal analysis (lead), Investigation (lead), Software (lead), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorXu Ou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting), Methodology (supporting)
Search for more papers by this authorYajuan Niu
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting)
Search for more papers by this authorLegeng Li
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Data curation (supporting)
Search for more papers by this authorDoudou Xing
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Yingjie Zhou
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Contribution: Conceptualization (equal), Formal analysis (supporting), Funding acquisition (supporting), Project administration (equal), Resources (supporting), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Feng Yan
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123 China
Contribution: Conceptualization (equal), Funding acquisition (lead), Project administration (equal), Resources (lead), Supervision (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorGraphical Abstract
Abstract
Electrochromic batteries as emerging smart energy devices are highly sought after owing to their real-time energy monitoring through visual color conversion. However, their large-scale applicability is hindered by insufficient capacity, inadequate cycling stability, and limited color variation. Herein, a flexible Zn-ion electrochromic battery (ZIEB) was assembled with sodium vanadate (VONa+) cathode, ion-redistributing hydrogel electrolyte, and Zn anode to address these challenges. The electrolyte contains anchored −SO3− and -NH3+, which facilitates ionic transportation and prevents Zn dendrite formation by promoting orientated Zn2+ deposition on the Zn (002) surface. The ZIEB exhibits a continuous reversible color transition, ranging from fully charged orange to mid-charged brown and drained green. It also demonstrates a high specific capacity of 302.4 mAh ⋅ g−1 at 0.05 A ⋅ g−1 with a capacity retention of 96.3 % after 500 cycles at 3 A ⋅ g−1. Additionally, the ZIEB maintains stable energy output even under bending, rolling, knotting, and twisting. This work paves a new strategy for the design of smart energy devices in wearable electronics.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202317944-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
anie202317944-sup-0001-Video_S1.mp42.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1W. Li, H. Xu, H. Zhang, F. Wei, L. Huang, S. Ke, J. Fu, C. Jing, J. Cheng, S. Liu, Nat. Commun. 2023, 14, 5235.
- 2D. Feng, Y. Jiao, P. Wu, Angew. Chem. Int. Ed. 2023, 62, e202215060.
- 3X. He, Y. Cui, Y. Qian, Y. Wu, H. Ling, H. Zhang, X. Kong, Y. Zhao, M. Xue, L. Jiang, L. Wen, J. Am. Chem. Soc. 2022, 144, 11168–11177.
- 4Q. Liu, X. Ou, L. Li, X. Wang, J. Wen, Y. Zhou, F. Yan, J. Mater. Chem. A 2022, 10, 12235–12246.
- 5H. Li, W. Zhang, A. Y. Elezzabi, Adv. Mater. 2020, 32, 2003574.
- 6C. Wu, H. Shi, L. Zhao, X. Chen, X. Zhang, C. Zhang, J. Yu, Y. Lv, R. Wei, T. Gao, J. Xie, Y. Yu, W. Liu, Adv. Funct. Mater. 2023, 33, 2214886.
- 7C. G. Granqvist, P. C. Lansåker, N. R. Mlyuka, G. A. Niklasson, E. Avendaño, Sol. Energy Mater. Sol. Cells 2009, 93, 2032–2039.
- 8Q. Zhao, Z. Pan, B. Liu, C. Bao, X. Liu, J. Sun, S. Xie, Q. Wang, J. Wang, Y. Gao, Nano-Micro Lett. 2023, 15, 87.
- 9H. Li, L. McRae, C. J. Firby, A. Y. Elezzabi, Adv. Mater. 2019, 31, 1807065.
- 10L. Wang, M. Guo, J. Zhan, X. Jiao, D. Chen, T. Wang, J. Mater. Chem. A 2020, 8, 17098–17105.
- 11W. Zhang, H. Li, W. W. Yu, A. Y. Elezzabi, Light-Sci. Appl. 2020, 9, 121.
- 12N. C. Davy, M. Sezen Edmonds, J. Gao, X. Lin, A. Liu, N. Yao, A. Kahn, Y. Loo, Nat. Energy 2017, 2, 17104.
- 13H. Li, A. Y. Elezzabi, Nanoscale Horiz. 2020, 5, 691–695.
- 14F. Zhao, B. Wang, W. Zhang, S. Cao, L. Liu, A. Y. Elezzabi, H. Li, W. W. Yu, Mater. Today 2023, 66, 431–447.
- 15Z. Tong, T. Kang, Y. Wan, R. Yang, Y. Wu, D. Shen, S. Liu, Y. Tang, C. Lee, Adv. Funct. Mater. 2021, 31, 2104639.
- 16Y. Hu, R. Shi, Y. Ren, W. Peng, C. Feng, Y. Zhao, S. Zheng, W. Li, Z. Sun, J. Guo, S. Guo, X. Wang, F. Yan, Adv. Funct. Mater. 2022, 32, 2203081.
- 17X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li, H. Liu, X. Guo, P. Jaumaux, X. Gao, Y. Fu, C. Wang, C. Wang, G. Wang, Nat. Commun. 2021, 12, 2857.
- 18N. Zhang, X. Chen, M. Yu, Z. Niu, F. Cheng, J. Chen, Chem. Soc. Rev. 2020, 49, 4203–4219.
- 19X. Ou, Q. Liu, J. Pan, L. Li, Y. Hu, Y. Zhou, F. Yan, Chem. Eng. J. 2022, 435, 135051.
- 20C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1705580.
- 21C. Jiang, Y. Fang, J. Lang, Y. Tang, Adv. Energy Mater. 2017, 7, 1700913.
- 22Y. Wang, H. Jiang, R. Zheng, J. Pan, J. Niu, X. Zou, C. Jia, J. Mater. Chem. A 2020, 8, 12799–12809.
- 23B. Wang, F. Zhao, W. Zhang, C. Li, K. Hu, B. N. Carnio, L. Liu, W. W. Yu, A. Y. Elezzabi, H. Li, Small Sci. 2023, 3, 2300046.
- 24Y. Tian, S. Cong, W. Su, H. Chen, Q. Li, F. Geng, Z. Zhao, Nano Lett. 2014, 14, 2150–2156.
- 25Y. Gao, P. Lei, S. Zhang, H. Liu, C. Hu, Z. Kou, J. Wang, G. Cai, Nanoscale 2023, 15, 8685–8692.
- 26Y. Yu, W. Xu, X. Liu, X. Lu, Adv. Sustainable Syst. 2020, 4, 2000082.
- 27T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. Liang, Energy Environ. Sci. 2020, 13, 4625–4665.
- 28Y. Wang, Q. Li, H. Hong, S. Yang, R. Zhang, X. Wang, X. Jin, B. Xiong, S. Bai, C. Zhi, Nat. Commun. 2023, 14, 3890.
- 29H. Liu, Q. Ye, D. Lei, Z. Hou, W. Hua, Y. Huyan, N. Li, C. Wei, F. Kang, J. Wang, Energy Environ. Sci. 2023, 16, 1610–1619.
- 30D. K. Pathak, H. C. Moon, Mater. Horiz. 2022, 9, 2949–2975.
- 31S. Wang, Y. Yang, X. Liang, Y. Ren, H. Ma, Z. Zhu, J. Wang, S. Zeng, S. Song, X. Wang, Y. Han, G. He, Z. Jiang, Adv. Funct. Mater. 2023, 33, 2300386.
- 32X. Fang, J. Sun, ACS Macro Lett. 2019, 8, 500–505.
- 33S. Tang, J. Gong, Y. Shi, S. Wen, Q. Zhao, Nat. Commun. 2022, 13, 3227.
- 34M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. 2022, 61, e202210979.
- 35Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng, T. Or, L. Yang, Q. Li, Q. Cu, R. Feng, Z. Zhang, Y. Nie, B. Ren, D. Luo, X. Wang, A. Yu, Z. Chen, Adv. Mater. 2022, 34, 2207344.
- 36L. Zhou, F. Wang, F. Yang, X. Liu, Y. Yu, D. Zheng, X. Lu, Angew. Chem. Int. Ed. 2022, 134, e202208051.
- 37H. Zhang, X. Gan, Z. Song, J. Zhou, Angew. Chem. Int. Ed. 2023, 62, e202217833.
- 38X. Shi, J. Wang, F. Yang, X. Liu, Y. Yu, X. Lu, Adv. Funct. Mater. 2023, 33, 2211917.
- 39C. Wang, Y. Liu, X. Qu, B. Shi, Q. Zheng, X. Lin, S. Chao, C. Wang, J. Zhou, Y. Sun, G. Mao, Z. Li, Adv. Mater. 2022, 34, 2105416.
- 40Y. Qin, H. Li, C. Han, F. Mo, X. Wang, Adv. Mater. 2022, 34, 2207118.
- 41W. Li, Q. Zhang, Z. Yang, H. Ji, T. Wu, H. Wang, Z. Cai, C. Xie, Y. Li, H. Wang, Small 2022, 18, 2205667.
- 42X. Zou, G. Xu, P. Fang, W. Li, Z. Jin, S. Guo, Y. Hu, M. Li, J. Pan, Z. Sun, F. Yan, Angew. Chem. Int. Ed. 2023, 62, e202300388.
- 43C. Guo, S. Yi, R. Si, B. Xi, X. An, J. Liu, J. Li, S. Xiong, Adv. Energy Mater. 2022, 12, 2202039.
- 44L. Shan, Y. Yang, W. Zhang, H. Chen, G. Fang, J. Zhou, S. Liang, Energy Storage Mater. 2019, 18, 10–14.
- 45Z. Li, Y. Ren, L. Mo, C. Liu, K. Hsu, Y. Ding, X. Zhang, X. Li, L. Hu, D. Ji, G. Cao, ACS Nano 2020, 14, 5581–5589.
- 46J. Yu, Y. Hu, X. Ma, X. Zou, H. Qi, Y. Zhou, F. Yan, J. Mater. Chem. A 2022, 10, 12842–12855.
- 47P. Hu, T. Zhu, X. Wang, X. Wei, M. Yan, J. Li, W. Luo, W. Yang, W. Zhang, L. Zhou, Z. Zhou, L. Mai, Nano Lett. 2018, 18, 1758–1763.
- 48J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie, X. W. (David) Lou, X. Wie Sun, Nat. Commun. 2014, 5, 4921.
- 49J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu, Y. Guo, J. Yu, X. Ma, Y. Qiu, Y. Huang, J. Mater. Chem. A 2018, 6, 11113–11118.
- 50Q. Zhao, Y. Fang, K. Qiao, W. Wei, Y. Yao, Y. Gao, Sol. Energy Mater. Sol. Cells 2019, 194, 95–102.
- 51Z. Song, B. Wang, W. Zhang, Q. Zhu, A. Y. Elezzabi, L. Liu, W. W. Yu, H. Li, Nano-Micro Lett. 2023, 15, 229.
- 52G. Cai, X. Cheng, M. Layani, A. W. M. Tan, S. Li, A. L. S. Eh, D. Gao, S. Magdassi, P. S. Lee, Nano Energy 2018, 49, 147–154.
- 53S. B. Singh, D. T. Tran, K. U. Jeong, N. H. Kim, J. H. Lee, Small 2022, 18, 2104462.
- 54T. T. A. Nguyen, B. S. Soram, D. T. Tran, N. H. Kim, J. H. Lee, Chem. Eng. J. 2023, 452, 139555.
- 55Y. Xue, X. Zhang, J. Zhang, J. Wu, Y. Sun, Y. Tian, Y. Xie, J. Mater. Chem. 2012, 22, 2560–2565.
- 56C. Luo, L. Xiao, X. Wu, Mater Adv 2022, 3, 604–610.
- 57F. Xie, H. Li, X. Wang, X. Zhi, D. Chao, K. Davey, S. Qiao, Adv. Energy Mater. 2021, 11, 2003419.
- 58X. Guo, Z. Zhang, J. Li, N. Luo, G. L. Chai, T. S. Miller, F. Lai, P. Shearing, D. J. L. Brett, D. Han, Z. Weng, G. He, I. P. Parkin, ACS Energy Lett. 2021, 6, 395–403.
- 59Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 2021, 12, 6606.
- 60X. Ge, W. Zhang, F. Song, B. Xie, J. Li, J. Wang, X. Wang, J. Zhao, G. Cui, Adv. Funct. Mater. 2022, 32, 2200429.
- 61L. Cao, D. Li, T. Deng, Q. Li, C. Wang, Angew. Chem. Int. Ed. 2020, 59, 19292–19296.
- 62J. Feng, D. Ma, K. Ouyang, M. Yang, Y. Wang, J. Qiu, T. Chen, J. Zhao, B. Yong, Y. Xie, H. Mi, L. Sun, C. He, P. Zhang, Adv. Funct. Mater. 2022, 32, 2207909.
- 63B. Delley, J. Chem. Phys. 1990, 92, 508–517.
- 64B. Delley, J. Chem. Phys. 2000, 113, 7756–7764.
- 65H. Jiang, G. Li, L. Si, M. Guo, H. Ma, W. Luo, J. Guan, Nanomaterials 2023, 13, 2632.
- 66S. Feng, X. Chen, Y. Zhou, W. Tu, P. Li, H. Li, Z. Zou, Nanoscale 2014, 6, 1896–1900.
- 67N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Angew. Chem. Int. Ed. 2021, 60, 2861–2865.
- 68H. Wang, W. Ye, B. Yin, K. Wang, M. S. Riaz, B. Xie, Y. Zhong, Y. Hu, Angew. Chem. Int. Ed. 2023, 62, e202218872.
- 69T. K. Le, P. V. Pham, C. Dong, N. Bahlawane, D. Vernardou, I. Mjejri, A. Rougier, S. W. Kim, J. Mater. Chem. C 2022, 10, 4019–4071.