Intermediates in Mechanochemical Reactions
Corresponding Author
Dr. Karen J. Ardila-Fierro
- [email protected]
- https://www.udea.edu.co/wps/portal/udea/web/inicio/investigacion/grupos-investigacion/ciencias-naturales-exactas/ciencia-materiales
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52–21, Medellín, Colombia
Search for more papers by this authorCorresponding Author
Prof. Dr. José G. Hernández
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52–21, Medellín, Colombia
Search for more papers by this authorCorresponding Author
Dr. Karen J. Ardila-Fierro
- [email protected]
- https://www.udea.edu.co/wps/portal/udea/web/inicio/investigacion/grupos-investigacion/ciencias-naturales-exactas/ciencia-materiales
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52–21, Medellín, Colombia
Search for more papers by this authorCorresponding Author
Prof. Dr. José G. Hernández
Grupo Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 70 No 52–21, Medellín, Colombia
Search for more papers by this authorGraphical Abstract
In this Minireview we present and discussed a series of examples from various areas in which reactive intermediates have been detected during mechanochemical reactions. Understanding the factors behind the formation and stabilization of these intermediates could enhance mechanochemical methods and chemical reaction development.
Abstract
Mechanochemical reactions offer methodological and environmental advantages for chemical synthesis, constantly attracting attention within the scientific community. Besides unmistakable sustainability advantages, the conditions under which mechanochemical reactions occur, namely solventless conditions, sometimes facilitate the isolation of otherwise labile or inaccessible products. Despite these advantages, limited knowledge exists regarding the mechanisms of these reactions and the types of intermediates involved. Nevertheless, in an expanding number of cases, ex situ and in situ monitoring techniques have allowed for the observation, characterization, and isolation of reaction intermediates in mechanochemical transformations. In this Minireview, we present a series of examples in which reactive intermediates have been detected in mechanochemical reactions spanning organic, organometallic, inorganic, and materials chemistry. Many of these intermediates were stabilized by non-covalent interactions, which played a pivotal role in guiding the chemical transformations. We believe that by uncovering and understanding such instances, the growing mechanochemistry community could find novel opportunities in catalysis and discover new mechanochemical reactions while achieving simplification in chemical reaction design.
Conflict of interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
References
- 1For selected review articles on milling, twin-screw extrusion, see:
- 1aV. Martinez, T. Stolar, B. Karadeniz, K. Užarević, Nat. Chem. Rev. 2023, 7, 51–65;
- 1bE. Juaristi, C. G. Avila-Ortiz, Synthesis 2023, 55, 2439–2459;
- 1cK. Kubota, Bull. Chem. Soc. Jpn. 2023, 96, 913–930;
- 1dL. E. Wenger, T. P. Hanusa, Chem. Commun. 2023, 59, 14210–14222;
- 1eM. T. J. Williams, L. C. Morrill, D. L. Browne, ChemSusChem 2022, 15, e202102157;
- 1fA. Krusenbaum, S. Grätz, G. T. Tigineh, L. Borchardt, J. G. Kim, Chem. Soc. Rev. 2022, 51, 2873–2905;
- 1gA. P. Amrute, J. De Bellis, M. Felderhoff, F. Schüth, Chem. Eur. J. 2021, 27, 6819–6847;
- 1hT. Friščić, C. Mottillo, H. M. Titi, Angew. Chem. Int. Ed. 2020, 59, 1018–1029;
- 1iK. Kubota, H. Ito, Trends Chem. 2020, 2, 1066–1081;
- 1jJ. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080–3094;
- 1kD. E. Crawford, Beilstein J. Org. Chem. 2017, 13, 65–75. For recent manuscripts on resonance acoustic mixing for mechanochemical synthesis, see:
- 1lC. B. Lennox, T. H. Borchers, L. Gonnet, C. J. Barrett, S. G. Koenig, K. Nagapudi, T. Friščić, Chem. Sci. 2023, 14, 7475–7481;
- 1mM. Wohlgemuth, S. Schmidt, M. Mayer, W. Pickhardt, S. Grätz, L. Borchardt, Chem. Eur. J. 2023, 29, e202301714;
- 1nH. M. Titi, J.-L. Do, A. J. Howarth, K. Nagapudi, T. Friščić, Chem. Sci. 2020, 11, 7578–7584;
- 1oA. A. L. Michalchuk, K. S. Hope, S. R. Kennedy, M. V, Blanco, E. V. Boldyreva, C. R. Pulham, Chem. Commun. 2018, 54, 4033–4036.
- 2
- 2aK. J. Ardila-Fierro, J. G. Hernández, ChemSusChem 2021, 14, 2145–2162;
- 2bN. Fantozzi, J.-N. Volle, A. Porcheddu, D. Virieux, F. García, E. Colacino, Chem. Soc. Rev. 2023, 52, 6680–6714.
- 3
- 3aF. Cuccu, L. De Luca, F. Delogu, E. Colacino, N. Solin, R. Mocci, A. Porcheddu, ChemSusChem 2022, 15, e202200362;
- 3bJ.-L. Do, T. Friščić, ACS Cent. Sci. 2017, 3, 13–19;
- 3cJ. G. Hernández, C. Bolm, J. Org. Chem. 2017, 82, 4007–4019.
- 4
- 4aJ. F. Reynes, V. Isoni, F. García, Angew. Chem. Int. Ed. 2023, 62, e202300819;
- 4bE. Colacino, V. Isoni, D. Crawford, F. García, Trends Chem. 2021, 3, 335–339.
- 5F. Gomollón-Bel, ACS Cent. Sci. 2022, 8, 1474–1476.
- 6
- 6aS. Lukin, L. S. Germann, T. Friščić, I. Halasz, Acc. Chem. Res. 2022, 55, 1262–1277;
- 6bA. A. Michalchuk, F. Emmerling, Angew. Chem. Int. Ed. 2022, 61, e202117270;
- 6cP. A. Julien, T. Friščić, Cryst. Growth Des. 2022, 22, 5726–5754.
- 7
- 7aY. S. Zholdassov, L. Yuan, S. Romero-García, R. W. Kwok, A. Boscoboinik, D. J. Valles, M. Marianski, A. Martini, R. W. Carpick, A. B. Braunschweig, Science 2023, 380, 1053–1058;
- 7bR. T. O'neil, R. Boulatov, Nat. Chem. Rev. 2021, 5, 148–167.
- 8
- 8aL. Takacs, Chem. Soc. Rev. 2013, 42, 7649–7659;
- 8bL. Takacs, J. Mater. Sci. 2018, 53, 13324–13330.
- 9F. Toda, K. Tanaka, A. Sekikawa, J. Chem. Soc. Chem. Commun. 1987, 279–280.
- 10For an example using an agate mortar and pestle, see: F. Toda, J. Inclusion Phenom. Mol. Recognit. Chem. 1989, 7, 247–256.
- 11M. Kaftory, K. Tanaka, F. Toda, J. Org. Chem. 1985, 50, 2154–2158.
- 12I. Zouev, T. Lavy, M. Kaftory, Eur. J. Org. Chem. 2006, 4164–4169.
- 13G. M. J. Schmidt, Pure Appl. Chem. 1971, 27, 647–678.
- 14N. Shan, W. Jones, Tetrahedron Lett. 2003, 44, 3687–3689.
- 15N. Shan, W. Jones, Green Chem. 2003, 5, 728–730.
- 16
- 16aG. K. Kole, L. L. Koh, S. Y. Lee, S. S, Lee, J. J. Vittal, Chem. Commun. 2010, 46, 3660–3662; for a recent review, see:
- 16bJ. J. Vittal, J. Photochem. Photobiol. C 2023, 57, 100636.
- 17A. N. Sokolov, D.-K. Bučar, J. Baltrusaitis, S. X. Gu, L. R. MacGillivray, Angew. Chem. Int. Ed. 2010, 49, 4273–4277.
- 18J. Stojaković, B. S. Farris, L. R. MacGillivray, Chem. Commun. 2012, 48, 7958–7960.
- 19J. Stojaković, B. S. Farris, L. R. MacGillivray, Faraday Discuss. 2014, 170, 35–40.
- 20T. Friščić, L. R. MacGillivray, Chem. Commun. 2003, 1306–1307.
- 21E. Elacqua, K. A. Kummer, R. H. Groeneman, E. W. Reinheimer, L. R. MacGillivray, J. Photochem. Photobiol. A 2016, 331, 42–47.
- 22S. P. Yelgaonkar, D. C. Swenson, L. R. MacGillivray, Chem. Sci. 2020, 11, 3569–3573.
- 23
- 23aD. M. Baier, C. Spula, S. Fanenstich, S. Grätz, L. Borchardt, Angew. Chem. Int. Ed. 2023, 62, e202218719;
- 23bJ. G. Hernández, Beilstein J. Org. Chem. 2017, 13, 1463–1469;
- 23cV. Štrukil, I. Sajko, Chem. Commun. 2017, 53, 9101–9104.
- 24E. Knoevenagel, Ber. Dtsch. Chem. Ges. 1894, 27, 2345–2346.
10.1002/cber.189402702229 Google Scholar
- 25G. Kaupp, M. Reza Naimi-Jamal, J. Schmeyers, Tetrahedron 2003, 59, 3753–3760.
- 26S. Lukin, M. Tireli, I. Lončarić, D. Barišić, P. Šket, D. Vrsaljko, M. di Michiel, J. Plavec, K. Užarević, I. Halasz, Chem. Commun. 2018, 54, 13216–13216.
- 27M. Kralj, S. Lukin, G. Miletić, I. Halasz, J. Org. Chem. 2021, 86, 14160–14168.
- 28S. Haferkamp, A. Paul, A. A. L. Michalchuk, F. Emmerling, Beilstein J. Org. Chem. 2019, 15, 1141–1148.
- 29A. M. El-Agrody, M. A. Al-Omar, A. E.-G. E. Amr, S. W. Ng, E. R. T. Tiekink, Acta Crystallogr. Sect. E 2013, 69, o515.
- 30
- 30aM. Y. Antipin, V. N. Nesterov, S. Jiang, O. Y. Borbulevych, D. M. Sammeth, E. V. Sevostianova, T. V. Timofeeva, J. Mol. Struct. 2003, 650, 1–20;
- 30bN. S. Akhmadiev, E. S. Mescheryakova, V. R. Akhmetova, A. G. Ibragimov, RSC Adv. 2021, 11, 18768–18775.
- 31K. Scheurrell, I. C. B. Martins, C. Murray, F. Emmerling, Phys. Chem. Chem. Phys. 2023, 25, 23637–23644.
- 32M. Juribašić, K. Užarević, D. Gracin, M. Ćurić, Chem. Commun. 2014, 50, 10287–10290.
- 33K.-Y. Jia, J.-B. Yu, Z.-J. Jiang, W.-K. Su, J. Org. Chem. 2016, 81, 6049–6955.
- 34M. E. Tauchert, C. D. Incarvito, A. L. Rheingold, R. G. Bergman, J. Am. Chem. Soc. 2012, 134, 1482–1485.
- 35J. G. Hernández, C. Bolm, Chem. Commun. 2015, 51, 12582–12584.
- 36G. N. Hermann, C. Bolm, ACS Catal. 2017, 7, 4592–4596.
- 37G. N. Hermann, P. Becker, C. Bolm, Angew. Chem. Int. Ed. 2016, 55, 3781–3784.
- 38G. U. Han, S. Shin, Y. Baek, D. Kim, K. Lee, J. G. Kim, P. H. Lee, Org. Lett. 2021, 23, 8622–8627.
- 39S. Ni, M. Hribersek, S. K. Baddigam, F. J. L. Ingner, A. Orthaber, P. J. Gates, L. T. Pilarski, Angew. Chem. Int. Ed. 2021, 60, 6660–6666.
- 40K. J. Ardila-Fierro, M. Rubčić, J. G. Hernández, Chem. Eur. J. 2022, 28, e202200737.
- 41D. L. Davies, O. Al-Duaij, J. Fawcett, M. Giardiello, S. T. Hilton, D. R. Russell, Dalton Trans. 2003, 4132–4138.
- 42L. Li, W. W. Brennessel, W. D. Jones, J. Am. Chem. Soc. 2008, 130, 12414–12419.
- 43Y. Boutadla, O. Al-Duaij, D. L. Davies, G. A. Griffith, K. Singh, Organometallics 2009, 28, 433–440.
- 44A. I. VanderWeide, W. W. Brennessel, W. D. Jones, J. Org. Chem. 2019, 84, 12960–12965.
- 45J. G. Hernández, K. J. Ardila-Fierro, S. Gómez, T. Stolar, M. Rubčić, E. Topić, C. Z. Hadad, A. Restrepo Chem. Eur. J. 2023, 29, e202301290.
- 46S. Gómez, S. Gómez, N. Rojas-Valencia, J. G. Hernández, K. J. Ardila-Fierro, T. Gómez, C. Cárdenas, C. Z. Hadad, C. Cappelli, A. Restrepo, Phys. Chem. Chem. Phys. 2024, 26, 2228–2241.
- 47A. D. Katsenis, A. Puškarić, V. Štrukil, C. Mottillo, P. A. Julien, K. Užarević, M.-H. Pham, T.-O. Do, S. A. J. Kimber, P. Lazić, O. Magdysyuk, R. E. Dinnebier, I. Halasz, T. Friščić, Nat. Commun. 2015, 6, 6662.
- 48
- 48aR. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi, H. Wang, Chem. Commun. 2013, 49, 9500–9502;
- 48bA. Deacon, L. Briquet, M. Malankowska, F. Massingberd-Mundy, S. Rudić, T. I. Hyde, H. Cavaye, J. Coronas, S. Poulston, T. Johnson, Commun. Chem. 2022, 5, 18.
- 49J. Beamish-Cook, K. Shankland, C. A. Murray, P. Vaqueiro, Cryst. Growth Des. 2021, 21, 3047–3055.
- 50Y. Hu, W.-K. Han, Y. Liu, R.-M. Zhu, X. Yan, H. Pang, Z.-G. Gu, ACS Materials Lett. 2023, 5, 2534–2541.
- 51D. Tan, L. Loots, T. Friščić, Chem. Commun. 2016, 52, 7760–7781.
- 52I. Priestley, C. Battilocchio, A. V. Iosub, F. Barreteau, G. W. Bluck, K. B. Ling, K. Ingram, M. Ciaccia, J. A. Leitch, D. L. Browne, Org. Process Res. Dev. 2023, 27, 269–275.
- 53I. Sović, S. Lukin, E. Meštrović, I. Halasz, A. Porcheddu, F. Delogu, P. C. Ricci, F. Caron, T. Perilli, A. Dogan, E. Colacino, ACS Omega 2020, 5, 28663–28672.
- 54F. Puccetti, S. Lukin, K. Užarević, E. Colacino, I. Halasz, C. Bolm, J. G. Hernández, Chem. Eur. J. 2022, 28, e202104409.
- 55T. Stolar, J. Alić, G. Talajić, N. Cindro, M. Rubčić, K. Molčanov, K. Užarević, J. G. Hernández, Chem. Commun. 2023, 59, 13490–13493.
- 56
- 56aS. A. Rowlands, A. K. Hall, P. G. McCormick, R. Street, R. J. Hart, G. F. Ebell, P. Donecker, Nature 1994, 367, 223;
- 56bP. Roesch, V. Vogel, F.-G. Simon, Int. J. Environ. Res. Public Health 2020, 17, 7242;
- 56cM. Lu, G. Cagnetta, K. Zhang, J. Huang, G. Yu, Sci. Rep. 2017, 7, 17180;
- 56dK. Gobindlal, Z. Zujovic, J. Jaine, C. C. Weber, J. Sperry, Environ. Sci. Technol. 2023, 57, 277–285;
- 56eY. Tanaka, Q. Zhang, F. Saito, J. Phys. Chem. B 2003, 107, 11091–11097.
- 57V. Štrukil, D. Gracin, O. V. Magdysyuk, R. E. Dinnebier, T. Friščić, Angew. Chem. Int. Ed. 2015, 54, 8440–8443.
- 58A. P. Amrute, Z. Łodziana, H. Schreyer, C. Weidenthaler, F. Schüth, Science 2019, 366, 485–489.
- 59T. Seo, K. Kubota, H. Ito, J. Am. Chem. Soc. 2020, 142, 9884–9889.
- 60H. Luo, F.-Z. Liu, Y. Liu, Z. Chu, K. Yan, J. Am. Chem. Soc. 2023, 145, 15118–15127.
- 61L. Pan, L. Zheng, Y. Chen, Z. Ke, Y.-Y. Yeung, Angew. Chem. Int. Ed. 2022, 61, e202207926.
- 62For a study on bromination reactions using N-bromosuccinimide and analog brominating agents, see: K. J. Ardila-Fierro, L. Vugrin, I. Halasz, A. Palčić, J. G. Hernández, Chem. Methods 2022, 2, e202200035.
- 63E. Bartalucci, C. Schumacher, L. Hendrickx, F. Puccetti, I. d'Anciães Almeida Silva, R. Dervişoğlu, R. Puttreddy, C. Bolm, T. Wiegand, Chem. Eur. J. 2023, 29, e202203466.
- 64J. G. Schiffmann, F. Emmerling, I. C. B. Martins, L. Van Wüllen, Solid State Nucl. Magn. Reson. 2020, 109, 101687.
- 65T. Auvray, T. Friščić, Molecules 2023, 28, 897.
- 66S. Lukin, T. Stolar, I. Lončarić, I. Milanović, N. Biliškov, M. di Michiel, T. Friščić, I. Halasz, Inorg. Chem. 2020, 59, 12200–12208.
- 67M. Sander, S. Fabig, L. Borchardt, Chem. Eur. J. 2023, 29, e202202860.
- 68
- 68aD. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel, J. Lewiński, J. Mater. Chem. A 2015, 3, 20772–20777;
- 68bD. Prochowicz, M. Saski, P. Yadav, M. Grätzel, J. Lewiński, Acc. Chem. Res. 2019, 52, 3233–3243;
- 68cZ. Hong, D. Tan, R. A. John, Y. K. E. Tay, Y. K. T. Ho, X. Zhao, T. C. Sum, N. Mathews, F. García, H. S. Soo, iScience 2019, 16, 312–325;
- 68dF. Palazon, Y. El Ajjouri, P. Sebastia-Luna, S. Lauciello, L. Manna, H. J. Bolink, J. Mater. Chem. C 2019, 7, 11406–11410.
- 69For selected examples, see:
- 69aA. Bose, P. Mal, Beilstein J. Org. Chem. 2019, 15, 881–900;
- 69bA. Garci, K. J. Castor, J. Fakhoury, J.-L. Do, J. Di Trani, P. Chidchob, R. S. Stein, A. K. Mittermaier, T. Friščić, H. Sleiman, J. Am. Chem. Soc. 2017, 139, 16913–16922;
- 69cC. Giri, P. K. Sahoo, R. Puttreddy, K. Rissanen, P. Mal, Chem. Eur. J. 2015, 21, 6390–6393;
- 69dA. Orita, L. Jiang, T. Nakano, N. Ma, J. Otera, Chem. Commun. 2002, 1362–1363.
- 70
- 70aY. Liu, F.-Z. Liu, K. Yan, Angew. Chem. Int. Ed. 2022, 61, e202116980;
- 70bY. Liu, F.-Z. Liu, S. Li, H. Liu, K. Yan, Chem. Eur. J. 2023, 29, e202302563.
- 71D. Braga, Chem. Commun. 2023, 59, 14052–14062.
- 72Ż. A. Mała, M. J. Janicki, R. W. Góra, K. A. Konieczny, R. Kowalczyk, Adv. Synth. Catal. 2023, 365, 3342–3352.
- 73Answers to the crossword on the Frontispiece: (1) detection, (2) characterization, (3) milling, (4) cocrystal, (5) intermediates, (6) monitoring, (7) mechanochemistry, (8) grinding.