Capturing Doublet Intermediate Emitters by Chemically Crosslinking Confinement towards Spatiotemporal Encryption
Haomin Li
School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (lead), Data curation (lead), Software (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Huanyu Lei
South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510641 China
Contribution: Data curation (supporting), Software (supporting)
Search for more papers by this authorDr. Shudeng Ma
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Dr. Tianfu Song
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan Li
School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Dr. Haifeng Yu
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorHaomin Li
School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (lead), Data curation (lead), Software (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Huanyu Lei
South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510641 China
Contribution: Data curation (supporting), Software (supporting)
Search for more papers by this authorDr. Shudeng Ma
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (supporting), Data curation (supporting), Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Dr. Tianfu Song
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Contribution: Conceptualization (supporting), Formal analysis (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Dr. Yan Li
School of Materials Science and Engineering, Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191 China
Contribution: Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Dr. Haifeng Yu
School of Materials Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing, 100871 China
Search for more papers by this authorGraphical Abstract
Abstract
Photoluminescence is one of the most meticulous ways to manipulate light energy. Typical photoluminescent emitters are mostly stable substances with a pure photophysical process of spontaneous photon-emission from their excited states. Intermediate emitters are elusive attributing to their synchronous energy transfer process including photophysical and incomplete photochemical pathways. An intermediate emitter containing radicals is more difficult to be observed due to its inherent chemical reactivity. Here, these challenges are overcome by spontaneously formed space limitations in polymer crosslinking networks meanwhile chemically active intermediates are captured. These doublet intermediates exhibit unique long-wavelength emissions under chemically crosslinking confinement conditions, and their luminous mechanism provides a novel perspective for designing intermediate emitters with liquid-crystal character and photoresponsive features towards spatiotemporal encryption, promising for the detection of photochemical reactions and the development of fascinating luminescent systems.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202312185-sup-0001-misc_information.pdf5.5 MB | Supporting Information |
anie202312185-sup-0001-Movie_S1.mp46.4 MB | Supporting Information |
anie202312185-sup-0001-Movie_S2.mp419.7 MB | Supporting Information |
anie202312185-sup-0001-Movie_S3.mp418.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aC. Liu, H. Bai, B. He, X. He, J. Zhang, C. Chen, Y. Qiu, R. Hu, F. Zhao, Y. Zhang, W. He, J. H. C. Chau, S. Chen, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2021, 60, 12424;
- 1bS. K. Bhunia, A. Saha, A. R. Maity, S. C. Ray, N. R. Jana, Sci. Rep. 2013, 3, 1473;
- 1cL. Zhou, X. Zhang, Q. Wang, Y. Lv, G. Mao, A. Luo, Y. Wu, Y. Wu, J. Zhang, W. Tan, J. Am. Chem. Soc. 2014, 136, 9838.
- 2
- 2aD. Heras, M. Reig, N. Llorca-Isern, J. Garcia-Amorós, D. Velasco, ACS Appl. Polym. Mater. 2019, 1, 535;
- 2bW. Gao, H. Song, X. Wang, X. Liu, X. Pang, Y. Zhou, B. Gao, X. Peng, ACS Appl. Mater. Interfaces 2018, 10, 1147.
- 3
- 3aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234;
- 3bB. Li, Z. Yang, W. Gong, X. Chen, D. W. Bruce, S. Wang, H. Ma, Y. Liu, W. Zhu, Z. Chi, Y. Wang, Adv. Opt. Mater. 2021, 9, 2100180;
- 3cX. Zheng, R. Huang, C. Zhong, G. Xie, W. Ning, M. Huang, F. Ni, F. B. Dias, C. Yang, Adv. Sci. 2020, 7, 1902087.
- 4R. M. Hochstrasser, J. Chem. Phys. 1962, 36, 1099.
- 5
- 5aA. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater. 2016, 15, 235;
- 5bA. Reisch, A. S. Klymchenko, Small 2016, 12, 1968.
- 6K. M. Dean, A. E. Palmer, Nat. Chem. Biol. 2014, 10, 512.
- 7
- 7aX. Ai, E. W. Evans, S. Dong, A. J. Gillett, H. Guo, Y. Chen, T. J. H. Hele, R. H. Friend, F. Li, Nature 2018, 563, 536;
- 7bQ. Peng, A. Obolda, M. Zhang, F. Li, Angew. Chem. Int. Ed. 2015, 54, 7091;
- 7cA. Abdurahman, Q. Peng, O. Ablikim, X. Ai, F. Li, Mater. Horiz. 2019, 6, 1265;
- 7dA. Abdurahman, T. J. H. Hele, Q. Gu, J. Zhang, Q. Peng, M. Zhang, R. H. Friend, F. Li, E. W. Evans, Nat. Mater. 2020, 19, 1224.
- 8B. Tang, J. Zhao, J.-F. Xu, X. Zhang, Chem. Sci. 2020, 11, 1192.
- 9
- 9aV. Diez-Cabanes, G. Seber, C. Franco, F. Bejarano, N. Crivillers, M. Mas-Torrent, J. Veciana, C. Rovira, J. Cornil, ChemPhysChem 2018, 19, 2572;
- 9bC. He, Z. Li, Y. Lei, W. Zou, B. Suo, J. Phys. Chem. Lett. 2019, 10, 574.
- 10
- 10aT. Förster, Angew. Chem. Int. Ed. 1969, 8, 333;
- 10bS. A. Jenekhe, J. A. Osaheni, Science 1994, 265, 765;
- 10cY. Ge, Y. Wen, H. Liu, T. Lu, Y. Yu, X. Zhang, B. Li, S.-T. Zhang, W. Li, B. Yang, J. Mater. Chem. C 2020, 8, 11830;
- 10dJ. A. Osaheni, S. A. Jenekhe, Macromolecules 1994, 27, 739.
- 11
- 11aM. G. Kuzmin, J. Photochem. Photobiol. A 1996, 102, 51;
- 11bS. G. Fedorenko, S. S. Khokhlova, A. I. Burshtein, J. Phys. Chem. A 2012, 116, 3;
- 11cS. Richert, A. Rosspeintner, S. Landgraf, G. Grampp, E. Vauthey, D. R. Kattnig, J. Am. Chem. Soc. 2013, 135, 15144;
- 11dS. L. Mattes, S. Farid, Science 1984, 226, 917.
- 12Z. Li, X. Ji, H. Xie, B. Z. Tang, Adv. Mater. 2021, 33, 2100021.
- 13R. Hu, N. L. C. Leung, B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494.
- 14
- 14aX. Zhang, Y. Xu, C. Valenzuela, X. Zhang, L. Wang, W. Feng, Q. Li, Light-Sci. Appl. 2022, 11, 223;
- 14bS. Lin, Y. Tang, W. Kang, H. K. Bisoyi, J. Guo, Q. Li, Nat. Commun. 2023, 14, 3005;
- 14cJ. Liu, Z.-P. Song, L.-Y. Sun, B.-X. Li, Y.-Q. Lu, Q. Li, Responsive Mater. 2023, 1, e20230005;
- 14dH. K. Bisoyi, Q. Li, Chem. Rev. 2022, 122, 4887–4926;
- 14eJ. Gao, Y. Tang, D. Martella, J. Guo, D. S. Wiersma, Q. Li, Responsive Mater. 2023, 1, e20230008.
- 15I. V. Khudyakov, Prog. Org. Coat. 2018, 121, 151.
- 16
- 16aY. P. Piryatinski, A. Y. Vakhnin, A. B. Verbitskii, A. K. Kadashchuk, Phys. Solid State 2011, 53, 2333;
- 16bY. Li, G. V. Baryshnikov, C. Xu, H. Ågren, L. Zhu, T. Yi, Y. Zhao, H. Wu, Angew. Chem. Int. Ed. 2021, 60, 23842;
- 16cW. Zheng, X. Li, G. V. Baryshnikov, X. Shan, F. Siddique, C. Qian, S. Zhao, H. Wu, Angew. Chem. Int. Ed. 2023, 62, e202305925.
- 17V. Castelletto, A. M. Squires, I. W. Hamley, J. Stasiak, G. D. Moggridge, Liq. Cryst. 2009, 36, 435.
- 18E. I. L. Jull, R. J. Mandle, T. Raistrick, Z. Zhang, P. J. Hine, H. F. Gleeson, Macromolecules 2022, 55, 4320.
- 19
- 19aJ. Zhang, P. Alam, S. Zhang, H. Shen, L. Hu, H. H. Y. Sung, I. D. Williams, J. Sun, J. W. Y. Lam, H. Zhang, B. Z. Tang, Nat. Commun. 2022, 13, 3492;
- 19bJ.-M. Jin, W.-C. Chen, J.-H. Tan, Y. Li, Y. Mu, Z.-L. Zhu, C. Cao, S. Ji, D. Hu, Y. Huo, H.-L. Zhang, C.-S. Lee, Angew. Chem. Int. Ed. 2023, 62, e202214281.
- 20A. Elqidrea, R. Meziane, U. Maschke, Mol. Cryst. Liq. Cryst. 2011, 547, 128–134.
- 21
- 21aP. J. Flory, J. Rehner, J. Chem. Phys. 1943, 11, 521;
- 21bT. Bouchaour, M. Benmouna, X. Coqueret, U. Maschke, Mol. Cryst. Liq. Cryst. 2004, 411, 553.