Comprehensive Comparisons between Directing and Alternating Current Electrolysis in Organic Synthesis
Dr. Li Zeng
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJianxing Wang
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDaoxin Wang
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hong Yi
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Aiwen Lei
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorDr. Li Zeng
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorJianxing Wang
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorDaoxin Wang
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Hong Yi
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Aiwen Lei
The Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 P. R. China
National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang, 330022 P. R. China
Search for more papers by this authorGraphical Abstract
In contrast to DC electrolysis, alternating current (AC) features polarity reversal and periodic variation, and will provide more chances and potentials for organic synthesis. This minireview delineates the unfolding landscape of recent progress in AC-driven organic transformations and endeavors to dissect disparities between DC and AC electrolytic patterns from their physical principles, reaction features and selectivity control.
Abstract
Organic electrosynthesis has consistently aroused significant interest within both academic and industrial spheres. Despite the considerable progress achieved in this field, the majority of electrochemical transformations have been conducted through the utilization of direct-current (DC) electricity. In contrast, the application of alternating current (AC), characterized by its polarity-alternating nature, remains in its infancy within the sphere of organic synthesis, primarily due to the absence of a comprehensive theoretical framework. This minireview offers an overview of recent advancements in AC-driven organic transformations and seeks to elucidate the differences between DC and AC electrolytic methodologies by probing into their underlying physical principles. These differences encompass the ability of AC to preclude the deposition of metal catalysts, the precision in modulating oxidation and reduction intensities, and the mitigation of mass transfer processes.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
References
- 1
- 1aM. Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230;
- 1bY. Yuan, J. Yang, A. Lei, Chem. Soc. Rev. 2021, 50, 10058;
- 1cX. Cheng, A. Lei, T.-S. Mei, H.-C. Xu, K. Xu, C. Zeng, CCS Chem. 2022, 4, 1120;
- 1dZ. Yang, W. Shi, H. Alhumade, H. Yi, A. Lei, Nat. Synth. 2023, 2, 217.
- 2M. Munda, S. Niyogi, K. Shaw, S. Kundu, R. Nandi, A. Bisai, Org. Biomol. Chem. 2022, 20, 727.
- 3R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492.
- 4
- 4aJ.-I. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265;
- 4bK. D. Moeller, Chem. Rev. 2018, 118, 4817.
- 5W. Zhang, N. Hong, L. Song, N. Fu, Chem. Rec. 2021, 21, 2574.
- 6
- 6aS. Rodrigo, D. Gunasekera, J. P. Mahajan, L. Luo, Curr. Opin. Electrochem. 2021, 28, 100712;
- 6bE. O. Bortnikov, S. N. Semenov, Curr. Opin. Electrochem. 2022, 35, 101050;
- 6cM. Jamshidi, C. Fastie, G. Hilt, Synthesis 2022, 54, 4661.
- 7N. T. Raj, S. Iniyan, R. Goic, Renewable Sustainable Energy Rev. 2011, 15, 3640.
- 8Y. Kawamata, K. Hayashi, E. Carlson, S. Shaji, D. Waldmann, B. J. Simmons, J. T. Edwards, C. W. Zapf, M. Saito, P. S. Baran, J. Am. Chem. Soc. 2021, 143, 16580.
- 9
- 9aL. E. Sattler, C. J. Otten, G. Hilt, Chem. Eur. J. 2020, 26, 3129;
- 9bL. Zeng, Y. Jiao, W. Yan, Y. Wu, S. Wang, P. Wang, D. Wang, Q. Yang, J. Wang, H. Zhang, A. Lei, Nat. Synth. 2023, 2, 172.
- 10X.-J. Xi, J. Hu, H.-Y. Chen, J.-J. Xu, Chem. Commun. 2022, 58, 10233.
- 11J. W. Shipley, M. T. Rogers, Can. J. Res. 1939, 17b, 147.
- 12
- 12aC. L. Wilson, W. T. Lippincott, J. Electrochem. Soc. 1956, 103, 672;
- 12bR. C. Alkire, J. E. Tsai, J. Electrochem. Soc. 1982, 129, 1157;
- 12cR. C. Alkire, J. D. Lisius, J. Electrochem. Soc. 1985, 132, 1879;
- 12dJ. D. Lisius, P. W. Hart, J. Electrochem. Soc. 1991, 138, 3678.
- 13A. Edward Remick, H. W. McCormick, J. Electrochem. Soc. 1955, 102, 534.
- 14
- 14aB. Lee, H. Naito, M. Nagao, T. Hibino, Angew. Chem. Int. Ed. 2012, 51, 6961;
- 14bC. W. Lee, N. H. Cho, K. T. Nam, Y. J. Hwang, B. K. Min, Nat. Commun. 2019, 10, 3919;
- 14cT. Hibino, K. Kobayashi, M. Nagao, D. Zhou, S. Chen, Y. Yamamoto, ACS Catal. 2023, 13, 8890.
- 15
- 15aA. Jutand, Chem. Rev. 2008, 108, 2300;
- 15bC. A. Malapit, M. B. Prater, J. R. Cabrera-Pardo, M. Li, T. D. Pham, T. P. McFadden, S. Blank, S. D. Minteer, Chem. Rev. 2022, 122, 3180.
- 16J.-S. Zhong, Y. Yu, Z. Shi, K.-Y. Ye, Org. Chem. Front. 2021, 8, 1315.
- 17
- 17aS. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011, 40, 5068;
- 17bT. Gensch, M. N. Hopkinson, F. Glorius, J. Wencel-Delord, Chem. Soc. Rev. 2016, 45, 2900;
- 17cY. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 9247.
- 18T. Wirtanen, T. Prenzel, J.-P. Tessonnier, S. R. Waldvogel, Chem. Rev. 2021, 121, 10241.
- 19
- 19aC. Ma, P. Fang, T.-S. Mei, ACS Catal. 2018, 8, 7179;
- 19bN. Sauermann, T. H. Meyer, Y. Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086.
- 20C. Amatore, C. Cammoun, A. Jutand, Adv. Synth. Catal. 2007, 349, 292.
- 21C. Ma, P. Fang, D. Liu, K.-J. Jiao, P.-S. Gao, H. Qiu, T.-S. Mei, Chem. Sci. 2021, 12, 12866.
- 22
- 22aL. Ackermann, Acc. Chem. Res. 2020, 53, 84;
- 22bK.-J. Jiao, Y.-K. Xing, Q.-L. Yang, H. Qiu, T.-S. Mei, Acc. Chem. Res. 2020, 53, 300.
- 23
- 23aL. Zeng, H. Li, J. Hu, D. Zhang, J. Hu, P. Peng, S. Wang, R. Shi, J. Peng, C.-W. Pao, J.-L. Chen, J.-F. Lee, H. Zhang, Y.-H. Chen, A. Lei, Nat. Catal. 2020, 3, 438;
- 23bY. Wu, L. Zeng, H. Li, Y. Cao, J. Hu, M. Xu, R. Shi, H. Yi, A. Lei, J. Am. Chem. Soc. 2021, 143, 12460;
- 23cC.-Y. Cai, X.-L. Lai, Y. Wang, H.-H. Hu, J. Song, Y. Yang, C. Wang, H.-C. Xu, Nat. Catal. 2022, 5, 943;
- 23dW. Fan, X. Zhao, Y. Deng, P. Chen, F. Wang, G. Liu, J. Am. Chem. Soc. 2022, 144, 21674;
- 23eX.-L. Lai, M. Chen, Y. Wang, J. Song, H.-C. Xu, J. Am. Chem. Soc. 2022, 144, 20201.
- 24B. R. Walker, S. Manabe, A. T. Brusoe, C. S. Sevov, J. Am. Chem. Soc. 2021, 143, 6257.
- 25R. P. Wexler, P. Nuhant, T. J. Senter, Z. J. Gale-Day, Org. Lett. 2019, 21, 4540.
- 26C. Schotten, C. J. Taylor, R. A. Bourne, T. W. Chamberlain, B. N. Nguyen, N. Kapur, C. E. Willans, React. Chem. Eng. 2021, 6, 147.
- 27Q. Jing, K. D. Moeller, Acc. Chem. Res. 2020, 53, 135.
- 28Y. Bai, L. Shi, L. Zheng, S. Ning, X. Che, Z. Zhang, J. Xiang, Org. Lett. 2021, 23, 2298.
- 29K. Hayashi, J. Griffin, K. C. Harper, Y. Kawamata, P. S. Baran, J. Am. Chem. Soc. 2022, 144, 5762.
- 30H. E. Zimmerman, Acc. Chem. Res. 2012, 45, 164.
- 31
- 31aJ. M. Hook, L. N. Mander, Nat. Prod. Rep. 1986, 3, 35;
- 31bT. J. Donohoe, D. House, J. Org. Chem. 2002, 67, 5015;
- 31cJ. Burrows, S. Kamo, K. Koide, Science 2021, 374, 741.
- 32B. K. Peters, K. X. Rodriguez, S. H. Reisberg, S. B. Beil, D. P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer, P. S. Baran, Science 2019, 363, 838.
- 33Y. Hioki, M. Costantini, J. Griffin, K. C. Harper, M. P. Merini, B. Nissl, Y. Kawamata, P. S. Baran, Science 2023, 380, 81.
- 34D. Gunasekera, J. P. Mahajan, Y. Wanzi, S. Rodrigo, W. Liu, T. Tan, L. Luo, J. Am. Chem. Soc. 2022, 144, 9874.
- 35Y. Ma, X. Yao, L. Zhang, P. Ni, R. Cheng, J. Ye, Angew. Chem. Int. Ed. 2019, 58, 16548.
- 36J. Fährmann, G. Hilt, Angew. Chem. Int. Ed. 2021, 60, 20313.
- 37S. Rodrigo, C. Um, J. C. Mixdorf, D. Gunasekera, H. M. Nguyen, L. Luo, Org. Lett. 2020, 22, 6719.
- 38W. Jud, S. Maljuric, C. O. Kappe, D. Cantillo, Org. Lett. 2019, 21, 7970.
- 39Y. Yuan, J.-C. Qi, D.-X. Wang, Z. Chen, H. Wan, J.-Y. Zhu, H. Yi, D. Chowdhury Abhishek, A. Lei, CCS Chem. 2022, 4, 2674.
- 40D. Wang, T. Jiang, H. Wan, Z. Chen, J. Qi, A. Yang, Z. Huang, Y. Yuan, A. Lei, Angew. Chem. Int. Ed. 2022, 61, e202201543.
- 41E. O. Bortnikov, S. N. Semenov, J. Org. Chem. 2021, 86, 782.
- 42C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D. Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int. Ed. 2017, 56, 13088.
- 43E. O. Bortnikov, B. S. Smith, D. M. Volochnyuk, S. N. Semenov, Chem. Eur. J. 2023, 29, e202203825.
- 44D. E. Blanco, B. Lee, M. A. Modestino, Proc. Natl. Acad. Sci. USA 2019, 116, 17683.