Linkage Microenvironment of Azoles-Related Covalent Organic Frameworks Precisely Regulates Photocatalytic Generation of Hydrogen Peroxide
Yi Mou
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xiaodong Wu
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChencheng Qin
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJunying Chen
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorYanlan Zhao
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Longbo Jiang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Chen Zhang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Xingzhong Yuan
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Edison Huixiang Ang
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616 Singapore
Search for more papers by this authorCorresponding Author
Prof. Hou Wang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorYi Mou
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorProf. Xiaodong Wu
College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorChencheng Qin
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorJunying Chen
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorYanlan Zhao
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Longbo Jiang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Chen Zhang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Xingzhong Yuan
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorProf. Edison Huixiang Ang
Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, 637616 Singapore
Search for more papers by this authorCorresponding Author
Prof. Hou Wang
College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorGraphical Abstract
A tunable covalent organic framework (COF) platform with three azole-related linkages was prepared through linker exchange reactions. The linkage microenvironment changes the photoelectric properties and photocatalytic performance. The thiazole linkage was more favorable than the oxazole and imidazole linkages for the formation of *O2 intermediate in H2O2 production.
Abstract
Artificial H2O2 photosynthesis by covalent organic frameworks (COFs) photocatalysts is promising for wastewater treatment. The effect of linkage chemistry of COFs as functional basis to photoelectrochemical properties and photocatalysis remains a significant challenge. In this study, three kinds of azoles-linked COFs including thiazole-linked TZ-COF, oxazole-linked OZ-COF and imidazole-linked IZ-COF were successfully synthesized. More accessible channels of charge transfer were constructed in TZ-COF via the donor-π-acceptor structure between thiazole linkage and pyrene linker, leading to efficient suppression of photoexcited charge recombination. Density functional theory calculations support the experimental studies, demonstrating that the thiazole linkage is more favorable for the formation of *O2 intermediate in H2O2 production than that of the oxazole and imidazole linkages. The real active sites in COFs located at the benzene ring fragment between pyrene unit and azole linkage.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202309480-sup-0001-IZ-COF.cif3.8 KB | Supporting Information |
anie202309480-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
anie202309480-sup-0001-OZ-COF.cif3.6 KB | Supporting Information |
anie202309480-sup-0001-TZ-COF.cif3.6 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Wang, C. Qian, J. Liu, Y. Zeng, D. Wang, W. Zhou, L. Gu, H. Wu, G. Liu, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 4862–4871;
- 1bA. M. Evans, L. R. Parent, N. C. Flanders, R. P. Bisbey, E. Vitaku, M. S. Kirschner, R. D. Schaller, L. X. Chen, N. C. Gianneschi, W. R. Dichtel, Science. 2018, 361, 52–57.
- 1cC. Gropp, T. Ma, N. Hanikel, O. M. Yaghi, Science 2020, 370, eabd6406.
- 2
- 2aH. Wang, Y. Yang, X. Yuan, W. Liang Teo, Y. Wu, L. Tang, Y. Zhao, Mater. Today 2022, 53, 106–133;
- 2bQ. Zhang, S. Dong, P. Shao, Y. Zhu, Z. Mu, D. Sheng, T. Zhang, X. Jiang, R. Shao, Z. Ren, J. Xie, X. Feng, B. Wang, Science 2022, 378, 181–186.
- 3M. R. Rao, Y. Fang, S. De Feyter, D. F. Perepichka, J. Am. Chem. Soc. 2017, 139, 2421–2427.
- 4L. Cusin, H. Peng, A. Ciesielski, P. Samorì, Angew. Chem. Int. Ed. 2021, 60, 14236–14250.
- 5P. F. Wei, M. Z. Qi, Z. P. Wang, S. Y. Ding, W. Yu, Q. Liu, L. K. Wang, H. Z. Wang, W. K. An, W. Wang, J. Am. Chem. Soc. 2018, 140, 4623–4631.
- 6R. Paul, S. Chandra Shit, H. Mandal, J. Rabeah, S. S. Kashyap, Y. Nailwal, D. B. Shinde, Z. Lai, J. Mondal, ACS Appl. Nano Mater. 2021, 4, 11732–11742.
- 7S. Nandi, S. K. Singh, D. Mullangi, R. Illathvalappil, L. George, C. P. Vinod, S. Kurungot, R. Vaidhyanathan, Adv. Energy Mater. 2016, 6, 1601189.
- 8M. Deng, J. Sun, A. Laemont, C. Liu, L. Wang, L. Bourda, C. Jeet, K. Van Hecke, R. Morent, N. De Geyter, K. Leus, H. Chen, P. Van Der Voort, Green Chem. 2023, 25, 3069–3076.
- 9H. Cheng, H. Lv, J. Cheng, L. Wang, X. Wu, H. Xu, Adv. Mater. 2022, 34, 2107480.
- 10F. Yu, Z. Zhu, S. Wang, Y. Peng, Z. Xu, Y. Tao, J. Xiong, Q. Fan, F. Luo, Chem. Eng. J. 2021, 412, 127558.
- 11F. P. Kinik, A. Ortega-Guerrero, D. Ongari, C. P. Ireland, B. Smit, Chem. Soc. Rev. 2021, 50, 3143–3177.
- 12C. Tantardini, A. R. Oganov, Nat. Commun. 2021, 12, 2087.
- 13Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, J. Am. Chem. Soc. 2016, 138, 10019–10025.
- 14Y. H. So, J. M. Zaleski, C. Murlick, A. Ellaboudy, Macromolecules 1996, 29, 2783–2795.
- 15C. J. Wu, X. Y. Li, T. R. Li, M. Z. Shao, L. J. Niu, X. F. Lu, J. L. Kan, Y. Geng, Y. Bin Dong, J. Am. Chem. Soc. 2022, 144, 18750–18755.
- 16
- 16aJ. Sun, H. Sekhar Jena, C. Krishnaraj, K. Singh Rawat, S. Abednatanzi, J. Chakraborty, A. Laemont, W. Liu, H. Chen, Y. Y. Liu, K. Leus, H. Vrielinck, V. Van Speybroeck, P. Van Der Voort, Angew. Chem. Int. Ed. 2023, 62, e202216719;
- 16bC. Krishnaraj, H. Sekhar Jena, L. Bourda, A. Laemont, P. Pachfule, J. Roeser, C. V. Chandran, S. Borgmans, S. M. J. Rogge, K. Leus, C. V. Stevens, J. A. Martens, V. Van Speybroeck, E. Breynaert, A. Thomas, P. Van Der Voort, J. Am. Chem. Soc. 2020, 142, 20107–20116;
- 16cM. Kou, Y. Wang, Y. Xu, L. Ye, Y. Huang, B. Jia, H. Li, J. Ren, Y. Deng, J. Chen, Y. Zhou, K. Lei, L. Wang, W. Liu, H. Huang, T. Ma, Angew. Chem. Int. Ed. 2022, 61, e20220413;
- 16dL. Chen, L. Wang, Y. Wan, Y. Zhang, Z. Qi, X. Wu, H. Xu, Adv. Mater. 2020, 32, 1904433;
- 16eY. Luo, B. Zhang, C. Liu, D. Xia, X. Ou, Y. Cai, Y. Zhou, J. Jiang, B. Han, Angew. Chem. Int. Ed. 2023, 62, e202305355.
- 17H. Wang, C. Yang, F. Chen, G. Zheng, Q. Han, Angew. Chem. Int. Ed. 2022, 61, e202202328.
- 18Y. Yang, J. Kang, Y. Li, J. Liang, J. Liang, L. Jiang, D. Chen, J. He, Y. Chen, J. Wang, New J. Chem. 2022, 46, 21605–21614.
- 19X. Di, X. Lv, H. Wang, F. Chen, S. Wang, G. Zheng, B. Wang, Q. Han, Chem. Eng. J. 2023, 455, 140124.
- 20J. N. Chang, Q. Li, J. W. Shi, M. Zhang, L. Zhang, S. Li, Y. Chen, S. L. Li, Y. Q. Lan, Angew. Chem. Int. Ed. 2023, 62, e202218868.
- 21D. Chen, W. Chen, Y. Wu, L. Wang, X. Wu, H. Xu, L. Chen, Angew. Chem. Int. Ed. 2023, 62, e202217479.
- 22W. Zhao, P. Yan, B. Li, M. Bahri, L. Liu, X. Zhou, R. Clowes, N. D. Browning, Y. Wu, J. W. Ward, A. I. Cooper, J. Am. Chem. Soc. 2022, 144, 9902–9909.
- 23J. Biscoe, B. E. Warren, J. Appl. Phys. 1942, 13, 364–371.
- 24W. Xu, Y. Gao, W. Ming, F. He, J. Li, X. H. Zhu, F. Kang, J. Li, G. Wei, Adv. Mater. 2020, 32, 2003965.
- 25K. C. Ranjeesh, R. Illathvalappil, S. D. Veer, S. Kurungot, S. S. Babu, J. Am. Chem. Soc. 2019, 141, 14950–14954.
- 26V. Singh, J. Kim, B. Kang, J. Moon, S. Kim, W. Y. Kim, H. R. Byon, Adv. Energy Mater. 2021, 11, 2003735.
- 27M. Zhao, M. Samoc, P. N. Prasad, B. A. Reinhardt, M. R. Unroe, M. Prazak, R. C. Evers, J. J. Kane, C. Jariwala, M. Sinsky, Chem. Mater. 1990, 2, 670–678.
- 28Y. Xu, N. Mao, C. Zhang, X. Wang, J. Zeng, Y. Chen, F. Wang, J. X. Jiang, Appl. Catal. B 2018, 228, 1–9.
- 29C. Mo, M. Yang, F. Sun, J. Jian, L. Zhong, Z. Fang, J. Feng, D. Yu, Adv. Sci. 2020, 7, 1902988.
- 30Z. Zhao, Y. Zheng, C. Wang, S. Zhang, J. Song, Y. Li, S. Ma, P. Cheng, Z. Zhang, Y. Chen, ACS Catal. 2021, 11, 2098–2107.
- 31C. G. Zhan, D. A. Dixon, M. I. Sabri, M. S. Kim, P. S. Spencer, J. Am. Chem. Soc. 2002, 124, 2744–2752.
- 32K. E. Horner, P. B. Karadakov, J. Org. Chem. 2015, 80, 7150–7157.
- 33C. Lin, X. Liu, B. Yu, C. Han, L. Gong, C. Wang, Y. Gao, Y. Bian, J. Jiang, ACS Appl. Mater. Interfaces 2021, 13, 27041–27048.
- 34A. Torres-Pinto, M. J. Sampaio, C. G. Silva, J. L. Faria, A. M. T. Silva, Appl. Catal. B 2019, 252, 128–137.
- 35J. Butler, G. G. Jayson, A. J. Swallow, Biochim. Biophys. Acta Bioenerg. 1975, 408, 215–222.
- 36S. Zhao, T. Guo, X. Li, T. Xu, B. Yang, X. Zhao, Appl. Catal. B 2018, 224, 725–732.
- 37L. Wang, B. Li, D. D. Dionysiou, B. Chen, J. Yang, J. Li, Environ. Sci. Technol. 2022, 56, 3386–3396.
- 38L. Li, L. Xu, Z. Hu, J. C. Yu, Adv. Funct. Mater. 2021, 31, 2106120.
- 39Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita, Angew. Chem. Int. Ed. 2019, 58, 5402–5406.
- 40C. Wu, Z. Teng, C. Yang, F. Chen, H. Bin Yang, L. Wang, H. Xu, B. Liu, G. Zheng, Q. Han, Adv. Mater. 2022, 34, 2110266.
- 41A. de Oliveira, G. F. de Lima, H. A. De Abreu, Chem. Phys. Lett. 2018, 691, 283–290.
- 42J. Qi, X. Yang, P. Y. Pan, T. Huang, X. Yang, C. C. Wang, W. Liu, Environ. Sci. Technol. 2022, 56, 5200–5212.