Low Ruthenium Content Confined on Boron Carbon Nitride as an Efficient and Stable Electrocatalyst for Acidic Oxygen Evolution Reaction
Xiaofang Bai
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorXiuping Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorYujiao Sun
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorMingcheng Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorProf. Dr. Jiantao Fan
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaoyi Xu
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Li
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorXiaofang Bai
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorXiuping Zhang
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorYujiao Sun
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorMingcheng Huang
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorProf. Dr. Jiantao Fan
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shaoyi Xu
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorCorresponding Author
Prof. Dr. Hui Li
Department of Materials Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Shenzhen Key Laboratory of Hydrogen Energy, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
Search for more papers by this authorGraphical Abstract
Ru nanoparticles immobilized on a stable boron carbon nitride (BCN) nanosheet support show excellent oxygen evolution reaction (OER) activity and stability. The coordination of introduced B and active N sites in BCN provides strong interaction between the Ru and the support, which facilitates Ru dispersity and promotes the catalyst's stability. Density functional theory (DFT) calculations reveal that the BCN support can reduce the OER energy barrier and change the adsorption capacity for intermediate products.
Abstract
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308704-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Shi, X. Wang, J. Ge, C. Liu, W. Xing, Nanoscale 2020, 12, 13249–13275;
- 1bJ. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430–433.
- 2
- 2aL. An, C. Wei, M. Lu, H. Liu, Y. Chen, G. G. Scherer, A. C. Fisher, P. Xi, Z. J. Xu, C.-H. Yan, Adv. Mater. 2021, 33, 2006328;
- 2bS. Hu, S. Ge, H. Liu, X. Kang, Q. Yu, B. Liu, Adv. Funct. Mater. 2022, 32, 2201726;
- 2cZ. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu, Adv. Energy Mater. 2020, 10, 2000478;
- 2dL. Li, P. Wang, Q. Shao, X. Huang, Adv. Mater. 2021, 33, 2004243;
- 2eH.-Y. Qu, X. He, Y. Wang, S. Hou, Appl. Sci. 2021, 11, 4320;
- 2fY. Zhang, X. Zhu, G. Zhang, P. Shi, A.-L. Wang, J. Mater. Chem. A 2021, 9, 5890–5914.
- 3
- 3aS. Chen, H. Huang, P. Jiang, K. Yang, J. Diao, S. Gong, S. Liu, M. Huang, H. Wang, Q. Chen, ACS Catal. 2020, 10, 1152–1160;
- 3bJ. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen, Adv. Mater. 2018, 30, 1801351;
- 3cX. Cui, P. Ren, C. Ma, J. Zhao, R. Chen, S. Chen, N. P. Rajan, H. Li, L. Yu, Z. Tian, D. Deng, Adv. Mater. 2020, 32, 1908126;
- 3dS. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today 2016, 262, 170–180.
- 4
- 4aY. Liu, X. Liang, H. Chen, R. Gao, L. Shi, L. Yang, X. Zou, Chin. J. Catal. 2021, 42, 1054–1077;
- 4bM. Fan, X. Liang, H. Chen, X. Zou, Dalton Trans. 2020, 49, 15568–15573;
- 4cT. W. van Deelen, C. Hernández Mejía, K. P. de Jong, Nat. Catal. 2019, 2, 955–970;
- 4dX.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748;
- 4eA. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81.
- 5
- 5aH.-S. Oh, H. N. Nong, T. Reier, A. Bergmann, M. Gliech, J. Ferreira de Araújo, E. Willinger, R. Schlögl, D. Teschner, P. Strasser, J. Am. Chem. Soc. 2016, 138, 12552–12563;
- 5bR. Li, H. Wang, F. Hu, K. C. Chan, X. Liu, Z. Lu, J. Wang, Z. Li, L. Zeng, Y. Li, X. Wu, Y. Xiong, Nat. Commun. 2021, 12, 3540.
- 6
- 6aY. Tong, G. Xue, H. Wang, M. Liu, J. Wang, C. Hao, X. Zhang, D. Wang, X. Shi, W. Liu, G. Li, Z. Tang, Nanoscale 2018, 10, 16425–16430;
- 6bH. Frey, A. Beck, X. Huang, J. A. van Bokhoven, M. G. Willinger, Science 2022, 376, 982–987.
- 7
- 7aT. Bhowmik, M. K. Kundu, S. Barman, ACS Appl. Mater. Interfaces 2016, 8, 28678–28688;
- 7bJ. Chen, P. Cui, G. Zhao, K. Rui, M. Lao, Y. Chen, X. Zheng, Y. Jiang, H. Pan, S. X. Dou, W. Sun, Angew. Chem. Int. Ed. 2019, 58, 12540–12544;
- 7cB. Jiang, T. Wang, Y. Cheng, F. Liao, K. Wu, M. Shao, ACS Appl. Mater. Interfaces 2018, 10, 39161–39167;
- 7dC. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao, Y. Li, X. Lu, R. Amal, C. Zhao, Adv. Mater. 2022, 34, 2110103;
- 7eY. Chen, Q. Zhou, G. Zhao, Z. Yu, X. Wang, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1705583.
- 8X. Wang, W. Chen, L. Zhang, T. Yao, W. Liu, Y. Lin, H. Ju, J. Dong, L. Zheng, W. Yan, X. Zheng, Z. Li, X. Wang, J. Yang, D. He, Y. Wang, Z. Deng, Y. Wu, Y. Li, J. Am. Chem. Soc. 2017, 139, 9419–9422.
- 9
- 9aW. Deng, T. Wu, Y. Wu, H. Zheng, G. Li, M. Yang, X. Zou, Y. Bai, Y. Yang, M. Jing, X. Wang, J. Mater. Chem. A 2022, 10, 20993–21003;
- 9bX.-R. Wang, J.-Y. Liu, Z.-W. Liu, W.-C. Wang, J. Luo, X.-P. Han, X.-W. Du, S.-Z. Qiao, J. Yang, Adv. Mater. 2018, 30, 1800005.
- 10S. D. Nehate, A. K. Saikumar, A. Prakash, K. B. Sundaram, Mater. Today 2020, 8, 100106.
- 11S. Wang, G. Wang, T. Wu, Y. Zhang, F. Zhan, Y. Wang, J. Wang, Y. Fu, J. Qiu, J. Mater. Chem. A 2018, 6, 14644–14650.
- 12
- 12aY. Li, M. Gu, X. Zhang, J. Fan, K. Lv, S. A. C. Carabineiro, F. Dong, Mater. Today 2020, 41, 270–303;
- 12bY. Li, Z. Ren, Z. He, P. Ouyang, Y. Duan, W. Zhang, K. Lv, F. Dong, Green Energy & Environ. 2023, 0, 0, https://doi.org/10.1016/j.gee.2023.02.012.
- 13W. Wang, H. Zhou, Y. Liu, S. Zhang, Y. Zhang, G. Wang, H. Zhang, H. Zhao, Small 2020, 16, 1906880.
- 14
- 14aQ. Li, J. Jiang, B. Lin, D. Ding, H. Xu, P. Wang, Y. Chen, Catal. Lett. 2019, 149, 3296–3303;
- 14bW. Xing, F. Ma, Z. Li, A. Wang, M. Liu, J. Han, G. Wu, W. Tu, J. Mater. Chem. A 2022, 10, 18333–18342.
- 15M. M. Hasan, G. E. Khedr, F. Zakaria, N. K. Allam, ACS Appl. Energ. Mater. 2022, 5, 9692–9701.
- 16C. Y. Zhi, X. D. Bai, E. G. Wang, Appl. Phys. Lett. 2002, 80, 3590–3592.
- 17R. Mighri, U. B. Demirci, J. G. Alauzun, Nanomaterials. 2023, 13, 734.
- 18B. Chang, L. Li, D. Shi, H. Jiang, Z. Ai, S. Wang, Y. Shao, J. Shen, Y. Wu, Y. Li, X. Hao, Appl. Catal. B 2021, 283, 119622.
- 19P. Giusto, H. Arazoe, D. Cruz, P. Lova, T. Heil, T. Aida, M. Antonietti, J. Am. Chem. Soc. 2020, 142, 20883–20891.
- 20J. Tang, B. Wang, Y. Zhang, X. Zhang, Q. Shen, J. Qin, S. Xue, X. Guo, C. Du, J. Chen, J. Mater. Chem. A 2022, 10, 4181–4190.
- 21
- 21aN.-T. Suen, S.-F. Hung, Q. Quan, N. Zhang, Y.-J. Xu, H. M. Chen, Chem. Soc. Rev. 2017, 46, 337–365;
- 21bJ. Gao, H. Tao, B. Liu, Adv. Mater. 2021, 33, 2003786.
- 22
- 22aL. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin, H. Wang, X. Liu, X. Shen, W. Zhang, W. Liu, Z. Qi, Z. Jiang, J. Yang, T. Yao, Nat. Commun. 2019, 10, 4849;
- 22bD. Chen, T. Liu, P. Wang, J. Zhao, C. Zhang, R. Cheng, W. Li, P. Ji, Z. Pu, S. Mu, ACS Energy Lett. 2020, 5, 2909–2915;
- 22cQ. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li, Y. Yao, X.-Z. Yuan, M. C. Williams, M. Gu, H. Chen, H. Li, H. Wang, Appl. Catal. B 2019, 244, 494–501;
- 22dJ. Gao, C.-Q. Xu, S.-F. Hung, W. Liu, W. Cai, Z. Zeng, C. Jia, H. M. Chen, H. Xiao, J. Li, Y. Huang, B. Liu, J. Am. Chem. Soc. 2019, 141, 3014–3023;
- 22eR. Ge, L. Li, J. Su, Y. Lin, Z. Tian, L. Chen, Adv. Energy Mater. 2019, 9, 1901313;
- 22fJ. He, X. Zhou, P. Xu, J. Sun, Adv. Energy Mater. 2021, 11, 2102883;
- 22gL. Li, L. Bu, B. Huang, P. Wang, C. Shen, S. Bai, T.-S. Chan, Q. Shao, Z. Hu, X. Huang, Adv. Mater. 2021, 33, 2105308;
- 22hJ. Lim, D. Park, S. S. Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, Adv. Funct. Mater. 2018, 28, 1704796;
- 22iY. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Nat. Commun. 2019, 10, 162;
- 22jY. Pi, Q. Shao, P. Wang, J. Guo, X. Huang, Adv. Funct. Mater. 2017, 27, 1700886;
- 22kC. Seitz Linsey, F. Dickens Colin, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, Y. Hwang Harold, K. Norskov Jens, F. Jaramillo Thomas, Science 2016, 353, 1011–1014;
- 22lJ. Wang, L. Han, B. Huang, Q. Shao, H. L. Xin, X. Huang, Nat. Commun. 2019, 10, 5692;
- 22mL. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, J.-S. Chen, X. Zou, Nat. Commun. 2018, 9, 5236;
- 22nQ. Yao, B. Huang, N. Zhang, M. Sun, Q. Shao, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 13983–13988;
- 22oZ. L. Zhao, Q. Wang, X. Huang, Q. Feng, S. Gu, Z. Zhang, H. Xu, L. Zeng, M. Gu, H. Li, Energy Environ. Sci. 2020, 13, 5143–5151;
- 22pJ. Zhu, Y. Guo, F. Liu, H. Xu, L. Gong, W. Shi, D. Chen, P. Wang, Y. Yang, C. Zhang, Angew. Chem. Int. Ed. 2021, 133, 12436–12442;
- 22qZ. Zhuang, Y. Wang, C.-Q. Xu, S. Liu, C. Chen, Q. Peng, Z. Zhuang, H. Xiao, Y. Pan, S. Lu, R. Yu, W.-C. Cheong, X. Cao, K. Wu, K. Sun, Y. Wang, D. Wang, J. Li, Y. Li, Nat. Commun. 2019, 10, 4875.
- 23I. Vincent, E.-C. Lee, H.-M. Kim, Sci. Rep. 2021, 11, 293.
- 24
- 24aQ. Liang, A. Bieberle-Hütter, G. Brocks, J. Phys. Chem. C 2022, 126, 1337–1345;
- 24bK. A. Stoerzinger, L. Qiao, M. D. Biegalski, Y. Shao-Horn, J. Phys. Chem. Lett. 2014, 5, 1636–1641.
- 25I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.