Discovery of Two-dimensional Hexagonal MBene HfBO and Exploration on its Potential for Lithium-Ion Storage
Nanxi Miao
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (equal), Funding acquisition (equal), Software (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Yutong Gong
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuaiyu Zhang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Formal analysis (equal), Software (equal)
Search for more papers by this authorQing Shen
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Formal analysis (equal), Investigation (equal), Software (equal)
Search for more papers by this authorRui Yang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Investigation (equal)
Search for more papers by this authorProf. Jianping Zhou
School of Physics & Information Technology, Shaanxi Normal University, Xi'an, 710119 P. R. China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorProf. Hideo Hosono
MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503 Japan
Contribution: Funding acquisition (equal), Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Junjie Wang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorNanxi Miao
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (lead), Formal analysis (equal), Funding acquisition (equal), Software (lead), Writing - original draft (lead)
Search for more papers by this authorProf. Yutong Gong
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
These authors contributed equally to this work.
Contribution: Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Validation (equal), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorHuaiyu Zhang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Formal analysis (equal), Software (equal)
Search for more papers by this authorQing Shen
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Formal analysis (equal), Investigation (equal), Software (equal)
Search for more papers by this authorRui Yang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Investigation (equal)
Search for more papers by this authorProf. Jianping Zhou
School of Physics & Information Technology, Shaanxi Normal University, Xi'an, 710119 P. R. China
Contribution: Formal analysis (equal), Investigation (equal)
Search for more papers by this authorProf. Hideo Hosono
MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503 Japan
Contribution: Funding acquisition (equal), Investigation (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Prof. Junjie Wang
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Department, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072 P. R. China
Contribution: Conceptualization (lead), Data curation (equal), Formal analysis (equal), Funding acquisition (equal), Supervision (lead), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorGraphical Abstract
A combination of DFT calculations and experiments were used to discover a large class of exfoliable h-MAB phases and their derivative h-MBenes. A representative 2D h-MBene, HfBO, was successfully synthesized by selectively etching the In layers from Hf2InB2. The synthesized 2D HfBO was demonstrated to show lithium-ion storage performance for the first time.
Abstract
The practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of In from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g−1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308436-sup-0001-misc_information.pdf10.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aK. S. Novoselov, A. K. Geim, S. V. Morozov, Y. Z. Jiang, S. V. Dubonos, V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669;
- 1bC. Jiang, A. Rasmita, H. Ma, Q. Tan, Z. Zhang, Z. Huang, S. Lai, N. Wang, S. Liu, X. Liu, T. Yu, Q. Xiong, W. Gao, Nat. Electron. 2021, 5, 23–27;
- 1cX. Chia, M. Pumera, Nat. Catal. 2018, 1, 909–921;
- 1dY. Xia, T. S. Mathis, M. Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409–412.
- 2
- 2aM. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M. W. Barsoum, Adv. Mater. 2011, 23, 4248–4253;
- 2bH. Ding, Y. Li, M. Li, K. Chen, K. Liang, G. Chen, J. Lu, J. Palisaitis, P. O. Å. Persson, P. Eklund, L. Hultman, S. Du, Z. Chai, Y. Gogotsi, Q. Huang, Science 2023, 379, 1130–1135;
- 2cA. Zhou, Y. Liu, S. Li, X. Wang, G. Ying, Q. Xia, P. Zhang, J. Adv. Ceram. 2021, 10, 1194–1242.
- 3
- 3aY. Li, H. Shao, Z. Lin, J. Lu, L. Liu, B. Duployer, P. O. Å. Persson, P. Eklund, L. Hultman, M. Li, K. Chen, X. H. Zha, S. Du, P. Rozier, Z. Chai, E. Raymundo Pinero, P. L. Taberna, P. Simon, Q. Huang, Nat. Mater. 2020, 19, 894–899;
- 3bA. Vahid Mohammadi, J. Rosen, Y. Gogotsi, Science 2021, 372, 1165;
- 3cD. Wang, C. Zhou, A. S. Filatov, W. Cho, F. Lagunas, M. Wang, S. Vaikuntanathan, C. Liu, R. F. Klie, D. V. Talapin, Science 2023, 379, 1242–1247.
- 4Z. Guo, J. Zhou, Z. Sun, J. Mater. Chem. A 2017, 5, 23530–23535.
- 5S. Wang, N. Miao, K. Su, V. A. Blatov, J. Wang, Nanoscale 2021, 13, 8254–8263.
- 6
- 6aX. Yang, C. Shang, S. Zhou, J. Zhao, Nanoscale Horiz. 2020, 5, 1106–1115;
- 6bX. Zhu, X. Zhou, Y. Jing, Y. Li, Nat. Commun. 2021, 12, 4080.
- 7G. Zhang, X. Li, K. Chen, Y. Guo, D. Ma, K. Chu, Angew. Chem. Int. Ed. 2023, 62, e202300054.
- 8Y. An, S. Gong, Y. Hou, J. Li, R. Wu, Z. Jiao, T. Wang, J. Jiao, J. Phys. Condens. Matter 2020, 32, 055503.
- 9J. Wang, M. Khazaei, M. Arai, N. Umezawa, T. Tada, H. Hosono, Chem. Mater. 2017, 29, 5922–5930.
- 10
- 10aD. Chen, Z. Jin, B. Zhao, Y. Wang, Q. He, Adv. Mater. 2021, 33, 2008089;
- 10bV. G. Nair, M. Birowska, D. Bury, M. Jakubczak, A. Rosenkranz, A. M. Jastrzębska, Adv. Mater. 2022, 34, 2108840;
- 10cW. Xiong, X. Feng, Y. Xiao, T. Huang, X. Li, Z. Huang, S. Ye, Y. Li, X. Ren, X. Wang, X. Ouyang, Q. Zhang, J. Liu, Chem. Eng. J. 2022, 446, 137466.
- 11
- 11aM. Ade, H. Hillebrecht, Inorg. Chem. 2015, 54, 6122–6135;
- 11bL. T. Alameda, C. F. Holder, J. L. Fenton, R. E. Schaak, Chem. Mater. 2017, 29, 8953–8957;
- 11cL. T. Alameda, P. Moradifar, Z. P. Metzger, N. Alem, R. E. Schaak, J. Am. Chem. Soc. 2018, 140, 8833–8840;
- 11dH. Zhang, H. Xiang, F. Dai, Z. Zhang, Y. Zhou, J. Mater. Sci. Technol. 2018, 34, 2022–2026;
- 11eL. T. Alameda, R. W. Lord, J. A. Barr, P. Moradifar, Z. P. Metzger, B. C. Steimle, C. F. Holder, N. Alem, S. B. Sinnott, R. E. Schaak, J. Am. Chem. Soc. 2019, 141, 10852–10861.
- 12J. Wang, T. Ye, Y. Gong, J. Wu, N. Miao, T. Tada, H. Hosono, Nat. Commun. 2019, 10, 2284.
- 13
- 13aJ. Zhou, J. Palisaitis, J. Halim, M. Dahlqvist, Q. Tao, I. Persson, L. Hultman, P. O. Å. Persson, J. Rosen, Science 2021, 373, 801–805;
- 13bM. Dahlqvist, Q. Tao, J. Zhou, J. Palisaitis, P. O. Å. Persson, J. Rosen, J. Am. Chem. Soc. 2020, 142, 18583–18591;
- 13cP. Helmer, J. Halim, J. Zhou, R. Mohan, B. Wickman, J. Björk, J. Rosen, Adv. Funct. Mater. 2022, 32, 2109060.
- 14
- 14aA. Lipatov, M. Alhabeb, M. R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Adv. Electron. Mater. 2016, 2, 1600255;
- 14bM. Seredych, C. E. Shuck, D. Pinto, M. Alhabeb, E. Precetti, G. Deysher, B. Anasori, N. Kurra, Y. Gogotsi, Chem. Mater. 2019, 31, 3324–3332;
- 14cB. C. Wyatt, A. Rosenkranz, B. Anasori, Adv. Mater. 2021, 33, 2007973;
- 14dB. Ahmed, A. E. Ghazaly, J. Rosen, Adv. Funct. Mater. 2020, 30, 2000894;
- 14eQ. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J. Palisaitis, L. Hultman, M. W. Barsoum, P. O. Å. Persson, J. Rosen, Nat. Commun. 2017, 8, 14949.
- 15N. Miao, J. Wang, Y. Gong, J. Wu, H. Niu, S. Wang, K. Li, A. R. Oganov, T. Tada, H. Hosono, Chem. Mater. 2020, 32, 6947–6957.
- 16A. Carlsson, J. Rosen, M. Dahlqvist, Phys. Chem. Chem. Phys. 2022, 24, 11249–11258.
- 17W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Cede, Sci. Adv. 2016, 2, e1600225.
- 18
- 18aY. Qin, Y. Zhou, L. Fan, Q. Feng, S. Grasso, C. Hu, J. Alloys Compd. 2021, 878, 160344;
- 18bT. Rackl, D. Johrendt, Solid State Sci. 2020, 106, 106316.
- 19M. Sokol, V. Natu, S. Kota, M. W. Barsoum, Trends Chem. 2019, 1, 210–223.
- 20
- 20aR. Hoffmann, Rev. Mod. Phys. 1988, 60, 601–628;
- 20bK. Fukui, H. Fujimoto, Frontier Orbitals and Reaction Paths, Selected Papers of Kenichi Fukui, World Scientific, Singapore, 1997, pp. 563.
- 21B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nat. Rev. Mater. 2017, 2, 16098.
- 22B. Huang, L. Xiao, J. Lu, L. Zhuang, Angew. Chem. Int. Ed. 2016, 128, 6347–6351.
- 23Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, D. He, Appl. Catal. B 2019, 258, 117956.
- 24M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M. W. Barsoum, ACS Nano 2012, 6, 1322–1331.
- 25P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature 2000, 407, 496–499.
- 26
- 26aP. Huang, H. Ying, S. Zhang, Z. Zhang, W. Q. Han, Adv. Energy Mater. 2022, 12, 2202052;
- 26bP. Huang, S. Zhang, H. Ying, W. Yang, J. Wang, R. Guo, W. Han, Nano Res. 2021, 14, 1218–1227;
- 26cT. Ruan, B. Wang, Y. Yang, X. Zhang, R. Song, Y. Ning, Z. Wang, H. Yu, Y. Zhou, D. Wang, H. Liu, S. Dou, Adv. Mater. 2020, 32, 2000151;
- 26dS. Zhang, H. Ying, P. Huang, J. Wang, Z. Zhang, T. Yang, W. Q. Han, ACS Nano 2020, 14, 17665–17674.
- 27N. Yesibolati, M. Shahid, W. Chen, M. N. Hedhili, M. C. Reuter, F. M. Ross, H. N. Alshareef, Small 2014, 10, 2849–2858.
- 28G. Ma, H. Shao, J. Xu, Y. Liu, Q. Huang, P. L. Taberna, P. Simon, Z. Lin, Nat. Commun. 2021, 12, 5085.
- 29
- 29aY. C. Tsai, C. T. Kuo, S. F. Liu, Y. T. Lee, T. R. Yew, J. Phys. Chem. C 2021, 125, 1221–1233;
- 29bV. Winkler, G. Kilibarda, S. Schlabach, D. V. Szabó, T. Hanemann, M. Bruns, J. Phys. Chem. C 2016, 120, 24706–24714.