Construction of Covalent Organic Cages with Aggregation-Induced Emission Characteristics from Metallacages for Mimicking Light-Harvesting Antenna
Dr. Yi Qin
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
These authors contributed equally to this work.
Search for more papers by this authorQing-Hui Ling
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorYu-Te Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yi-Xiong Hu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorProf. Lianrui Hu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorProf. Xiaoli Zhao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Dong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Hai-Bo Yang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Lin Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorDr. Yi Qin
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
These authors contributed equally to this work.
Search for more papers by this authorQing-Hui Ling
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorYu-Te Wang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
These authors contributed equally to this work.
Search for more papers by this authorDr. Yi-Xiong Hu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorProf. Lianrui Hu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorProf. Xiaoli Zhao
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Dong Wang
Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 China
Search for more papers by this authorProf. Hai-Bo Yang
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Lin Xu
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062 China
Search for more papers by this authorCorresponding Author
Prof. Ben Zhong Tang
Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172 China
Search for more papers by this authorGraphical Abstract
A series of covalent organic cages with aggregation-induced emission characteristics were elegantly prepared through the reduction of preorganized metallacages. These covalent cages performed well as energy donors for the construction of artificial light-harvesting systems for the photocatalytic dehalogenation reaction.
Abstract
A series of covalent organic cages built from fluorophores capable of aggregation-induced emission (AIE) were elegantly prepared through the reduction of preorganized M2(LA)3(LB)2-type metallacages, simultaneously taking advantage of the synthetic accessibility and well-defined shapes and sizes of metallacages, the good chemical stability of the covalent cages as well as the bright emission of AIE fluorophores. Moreover, the covalent cages could be further post-synthetically modified into an amide-functionalized cage with a higher quantum yield. Furthermore, these presented covalent cages proved to be good energy donors and were used to construct light-harvesting systems employing Nile Red as an energy acceptor. These light-harvesting systems displayed efficient energy transfer and relatively high antenna effect, which enabled their use as efficient photocatalysts for a dehalogenation reaction. This research provides a new avenue for the development of luminescent covalent cages for light-harvesting and photocatalysis.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202308210-sup-0001-misc_information.pdf7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aZ. Wang, Y. Hu, S. Zhang, Y. Sun, Chem. Soc. Rev. 2022, 51, 6704–6737;
- 1bH.-Q. Peng, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Chem. Rev. 2015, 115, 7502–7542;
- 1cS. Kundu, A. Patra, Chem. Rev. 2017, 117, 712–757.
- 2
- 2aP.-Z. Chen, Y.-X. Weng, L.-Y. Niu, Y.-Z. Chen, L.-Z. Wu, C.-H. Tung, Q.-Z. Yang, Angew. Chem. Int. Ed. 2016, 55, 2759–2763;
- 2bS. Guo, Y. Song, Y. He, X.-Y. Hu, L. Wang, Angew. Chem. Int. Ed. 2018, 57, 3163–3167;
- 2cM.-J. Sun, Y. Liu, W. Zeng, Y. S. Zhao, Y.-W. Zhong, J. Yao, J. Am. Chem. Soc. 2019, 141, 6157–6161;
- 2dW.-J. Li, X.-Q. Wang, D.-Y. Zhang, Y.-X. Hu, W.-T. Xu, L. Xu, W. Wang, H.-B. Yang, Angew. Chem. Int. Ed. 2021, 60, 18761–18768;
- 2eH. A. M. Ardoña, E. R. Draper, F. Citossi, M. Wallace, L. C. Serpell, D. J. Adams, J. D. Tovar, J. Am. Chem. Soc. 2017, 139, 8685–8692;
- 2fW.-K. Han, Y. Liu, X. Yan, Y. Jiang, J. Zhang, Z.-G. Gu, Angew. Chem. Int. Ed. 2022, 61, e202208791;
- 2gY. Jiang, J. McNeill, Chem. Rev. 2017, 117, 838–859;
- 2hJ.-J. Li, Y. Chen, J. Yu, N. Cheng, Y. Liu, Adv. Mater. 2017, 29, 1701905;
- 2iX.-M. Chen, Q. Cao, H. K. Bisoyi, M. Wang, H. Yang, Q. Li, Angew. Chem. Int. Ed. 2020, 59, 10493–10497.
- 3T. Mirkovic, E. E. Ostroumov, J. M. Anna, R. v. Grondelle, Govindjee, G. D. Scholes, Chem. Rev. 2017, 117, 249–293.
- 4
- 4aY. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361–5388;
- 4bN.-W. Wu, J. Zhang, D. Ciren, Q. Han, L.-J. Chen, L. Xu, H.-B. Yang, Organometallics 2013, 32, 2536.
- 5
- 5aJ. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740–1741;
- 5bJ. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718–11940;
- 5cN. Song, Z. Zhang, P. Liu, Y.-W. Yang, L. Wang, D. Wang, B. Z. Tang, Adv. Mater. 2020, 32, 2004208;
- 5dZ. Zhang, M. Kang, H. Tan, N. Song, M. Li, P. Xiao, D. Yan, L. Zhang, D. Wang, B. Z. Tang, Chem. Soc. Rev. 2022, 51, 1983–2030.
- 6
- 6aC. Li, J. Zhang, S. Zhang, Y. Zhao, Angew. Chem. Int. Ed. 2019, 58, 1643–1647;
- 6bZ. Zhang, Z. Zhao, Y. Hou, H. Wang, X. Li, G. He, M. Zhang, Angew. Chem. Int. Ed. 2019, 58, 8862–8866;
- 6cY. Li, Y. Dong, L. Cheng, C. Qin, H. Nian, H. Zhang, Y. Yu, L. Cao, J. Am. Chem. Soc. 2019, 141, 8412–8415;
- 6dD. Zhang, W. Yu, S. Li, Y. Xia, X. Li, Y. Li, T. Yi, J. Am. Chem. Soc. 2021, 143, 1313–1317;
- 6eY.-X. Yuan, J.-H. Jia, Y.-P. Song, F.-Y. Ye, Y.-S. Zheng, S.-Q. Zang, J. Am. Chem. Soc. 2022, 144, 5389–5399.
- 7
- 7aE. G. Percástegui, T. K. Ronson, J. R. Nitschke, Chem. Rev. 2020, 120, 13480–13544;
- 7bS. Pullen, G. H. Clever, Acc. Chem. Res. 2018, 51, 3052–3064;
- 7cL. Catti, R. Sumida, M. Yoshizawa, Coord. Chem. Rev. 2022, 460, 214460;
- 7dM. Morimoto, S. M. Bierschenk, K. T. Xia, R. G. Bergman, K. N. Raymond, F. D. Toste, Nat. Catal. 2020, 3, 969–984;
- 7eA. He, Z. Jiang, Y. Wu, H. Hussain, J. Rawle, M. E. Briggs, M. A. Little, A. G. Livingston, A. I. Cooper, Nat. Mater. 2022, 21, 463–470;
- 7fL. Cheng, K. Liu, Y. Duan, H. Duan, Y. Li, M. Gao, L. Cao, CCS Chem. 2021, 3, 2749–2763;
- 7gY. Shi, K. Cai, H. Xiao, Z. Liu, J. Zhou, D. Shen, Y. Qiu, Q.-H. Guo, C. Stern, M. R. Wasielewski, F. Diederich, W. A. Goddard III, J. F. Stoddart, J. Am. Chem. Soc. 2018, 140, 13835–13842;
- 7hY. Wu, C. Zhang, S. Fang, D. Zhu, Y. Chen, C. Ge, H. Tang, H. Li, Angew. Chem. Int. Ed. 2022, 61, e202209078;
- 7iQ.-P. Hu, H. Zhou, T.-Y. Huang, Y.-F. Ao, D.-X. Wang, Q.-Q. Wang, J. Am. Chem. Soc. 2022, 144, 6180–6184;
- 7jA. Kumar, R. Saha, P. S. Mukherjee, Chem. Sci. 2021, 12, 5319–5329;
- 7kY. Li, S. S. Rajasree, G. Y. Lee, J. Yu, J.-H. Tang, R. Ni, G. Li, K. N. Houk, P. Deria, P. J. Stang, J. Am. Chem. Soc. 2021, 143, 2908–2919;
- 7lK. Acharyya, S. Bhattacharyya, H. Sepehrpour, S. Chakraborty, S. Lu, B. Shi, X. Li, P. S. Mukherjee, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14565–14569;
- 7mR. D. Mukhopadhyay, Y. Kim, J. Koo, K. Kim, Acc. Chem. Res. 2018, 51, 2730–2738;
- 7nY. Qin, X. Chen, Y. Gui, H. Wang, B. Z. Tang, D. Wang, J. Am. Chem. Soc. 2022, 144, 12825–12833;
- 7oH. Ube, K. Endo, H. Sato, M. Shionoya, J. Am. Chem. Soc. 2019, 141, 10384–10389;
- 7pY. Li, Y.-Y. An, J.-Z. Fan, X.-X. Liu, X. Li, F. E. Hahn, Y.-Y. Wang, Y.-F. Han, Angew. Chem. Int. Ed. 2020, 59, 10073–10080;
- 7qP.-F. Cui, X.-R. Liu, Y.-J. Lin, Z.-H. Li, G.-X. Jin, J. Am. Chem. Soc. 2022, 144, 6558–6565;
- 7rS.-J. Hu, X.-Q. Guo, L.-P. Zhou, D.-N. Yan, P.-M. Cheng, L.-X. Cai, X.-Z. Li, Q.-F. Sun, J. Am. Chem. Soc. 2022, 144, 4244–4253;
- 7sX. Tang, H. Jiang, Y. Si, N. Rampal, W. Gong, C. Cheng, X. Kang, D. Fairen-Jimenez, Y. Cui, Y. Liu, Chem 2021, 7, 2771–2786;
- 7tX. Zhang, X. Dong, W. Lu, D. Luo, X.-W. Zhu, X. Li, X.-P. Zhou, D. Li, J. Am. Chem. Soc. 2019, 141, 11621–11627;
- 7uZ. Wei, X. Jing, Y. Yang, J. Yuan, M. Liu, C. He, C. Duan, Angew. Chem. Int. Ed. 2022, 62, e202214577.
- 8
- 8aK. Mahata, P. D. Frischmann, F. Würthner, J. Am. Chem. Soc. 2013, 135, 15656–15661;
- 8bA. J. Musser, P. P. Neelakandan, J. M. Richter, H. Mori, R. H. Friend, J. R. Nitschke, J. Am. Chem. Soc. 2017, 139, 12050–12059;
- 8cD. C. Flynn, G. Ramakrishna, H.-B. Yang, B. H. Northrop, P. J. Stang, T. Goodson III, J. Am. Chem. Soc. 2010, 132, 1348–1358;
- 8dG.-J. Zhao, B. H. Northrop, P. J. Stang, K.-L. Han, J. Phys. Chem. A 2010, 114, 3418–3422.
- 9
- 9aM. Zhang, M. L. Saha, M. Wang, Z. Zhou, B. Song, C. Lu, X. Yan, X. Li, F. Huang, S. Yin, P. J. Stang, J. Am. Chem. Soc. 2017, 139, 5067–5074;
- 9bP. P. Neelakandan, A. Jiménez, J. R. Nitschke, Chem. Sci. 2014, 5, 908–915;
- 9cC. Li, B. Zhang, Y. Dong, Y. Li, P. Wang, Y. Yu, L. Cheng, L. Cao, Dalton Trans. 2020, 49, 8051–8055.
- 10
- 10aH. Duan, Y. Li, Q. Li, P. Wang, X. Liu, L. Cheng, Y. Yu, L. Cao, Angew. Chem. Int. Ed. 2020, 59, 10101–10110;
- 10bX.-Y. Chen, D. Shen, K. Cai, Y. Jiao, H. Wu, B. Song, L. Zhang, Y. Tan, Y. Wang, Y. Feng, C. L. Stern, J. F. Stoddart, J. Am. Chem. Soc. 2020, 142, 20152–20160.
- 11
- 11aJ. Zhao, Z. Zhou, G. Li, P. J. Stang, X. Yan, Nat. Sci. Rev. 2021, 8, nwab045;
- 11bH.-T. Feng, Y.-X. Yuan, J.-B. Xiong, Y.-S. Zheng, B. Z. Tang, Chem. Soc. Rev. 2018, 47, 7452–7476;
- 11cJ.-G. Yu, L.-Y. Sun, C. Wang, Y. Li, Y.-F. Han, Chem. Eur. J. 2021, 27, 1556–1575;
- 11dX. Yan, T. R. Cook, P. Wang, F. Huang, P. J. Stang, Nat. Chem. 2015, 7, 342–348;
- 11eL. A. Pérez-Márquez, M. D. Perretti, R. García-Rodríguez, F. Lahoz, R. Carrillo, Angew. Chem. Int. Ed. 2022, 61, e202205403;
- 11fM. Konopka, P. Cecot, S. Ulrich, A. R. Stefankiewicz, Front. Chem. 2019, 7, 503;
- 11gW. Drozdz, C. Bouillon, C. Kotras, S. Richeter, M. Barboiu, S. Clément, A. R. Stefankiewicz, S. Ulrich, Chem. Eur. J. 2017, 23, 18010–18018;
- 11hH. Qu, Y. Wang, Z. Li, X. Wang, H. Fang, Z. Tian, X. Cao, J. Am. Chem. Soc. 2017, 139, 18142–18145;
- 11iX. Zheng, W. Zhu, C. Zhang, Y. Zhang, C. Zhong, H. Li, G. Xie, X. Wang, C. Yang, J. Am. Chem. Soc. 2019, 141, 4704–4710.
- 12
- 12aK. Acharyya, P. S. Mukherjee, Angew. Chem. Int. Ed. 2019, 58, 8640–8653;
- 12bS. Sarkar, P. Sarkar, P. Ghosh, J. Org. Chem. 2021, 86, 6648–6664.
- 13
- 13aJ. Mosquera, S. Zarra, J. R. Nitschke, Angew. Chem. Int. Ed. 2014, 53, 1556–1559;
- 13bJ.-H. Zhang, H.-P. Wang, L.-Y. Zhang, S.-C. Wei, Z.-W. Wei, M. Pan, C.-Y. Su, Chem. Sci. 2020, 11, 8885–8894;
- 13cY. Jin, B. A. Voss, R. D. Noble, W. Zhang, Angew. Chem. Int. Ed. 2010, 49, 6348–6351;
- 13dA. J. Peters, K. S. Chichak, S. J. Cantrill, J. F. Stoddart, Chem. Commun. 2005, 3394–3396;
- 13eR. Lavendomme, T. K. Ronson, J. R. Nitschke, J. Am. Chem. Soc. 2019, 141, 12147–12158.
- 14J. Mei, Y. Hong, J. W. Y. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv. Mater. 2014, 26, 5429.
- 15Y. Tu, J. Liu, H. Zhang, Q. Peng, J. W. Y. Lam, B. Z. Tang, Angew. Chem. Int. Ed. 2019, 58, 14911–14914.
- 16
- 16aW.-J. Li, X.-Q. Wang, W. Wang, Z. Hu, Y. Ke, H. Jiang, C. He, X. Wang, Y.-X. Hu, P.-P. Jia, P. Yin, J. Chen, H. Sun, Z. Sun, L. Xu, H.-B. Yang, Giant 2020, 2, 100020;
- 16bJ.-J. Li, H.-Y. Zhang, X.-Y. Dai, Z.-X. Liu, Y. Liu, Chem. Commun. 2020, 56, 5949–595.
- 17M. Hao, G. Sun, M. Zuo, Z. Xu, Y. Chen, X.-Y. Hu, L. Wang, Angew. Chem. Int. Ed. 2020, 59, 10095–10100.
- 18Deposition numbers 2208056 (for metallacage M1), and 2208057 (for metallacage M2) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.