Multiple Stimuli-Responsive Luminescent Chiral Hybrid Antimony Chlorides for Anti-Counterfeiting and Encryption Applications
Dan-Yang Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equally to this work.
Search for more papers by this authorHai-Yang Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equally to this work.
Search for more papers by this authorRun-Ping Han
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Hua-Li Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Prof. Shuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorDan-Yang Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equally to this work.
Search for more papers by this authorHai-Yang Li
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
These authors contributed equally to this work.
Search for more papers by this authorRun-Ping Han
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Hua-Li Liu
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorCorresponding Author
Prof. Shuang-Quan Zang
Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001 China
Search for more papers by this authorGraphical Abstract
The chiral hybrid antimony halides R-/S-(C5H12NO)2SbCl5 have excitation-dependent emission originating from the synergistic effects of ligand and self-trapped excitons, and exhibit reversible structural transformation between non-emissive R-/S-(C5H12NO)2SbCl5 ⋅ DMF upon exposure to DMF and heat. CPL switch, chiral optical logic gate and anti-counterfeiting applications have been investigated based on the multiple stimuli-responsive properties.
Abstract
Stimuli-responsive circularly polarized luminescence (CPL) materials are ideal for information anti-countering applications, but the best-performing materials have not yet been identified. This work presents enantiomorphic hybrid antimony halides R-(C5H12NO)2SbCl5 (1) and S-(C5H12NO)2SbCl5 (2) showing mirror-imaged CPL activity with a dissymmetry factor of 1.2×10−3. Interestingly, the DMF-induced structural transformation is realized to obtain non-emissive R-(C5H12NO)2SbCl5 ⋅ DMF (3) and S-(C5H12NO)2SbCl5 ⋅ DMF (4) upon exposure to DMF vapor. The transformation process is reversed upon heating. DFT calculations showed that the DMF-induced-quenched-luminescence is attributed to the intersection of the ground and excited state curves on the configuration coordinates. Unexpectedly, the nanocrystals of the chiral antimony halides 1 and 2 were prepared and indicate the excellent solution process performance. The reversible PL and CPL switching gives the system applications in information technology, anti-counterfeiting, encryption-decryption, and logic gates.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307875-sup-0001-CIF.rar1.1 MB | Supporting Information |
anie202307875-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Wang, J. Yang, M. Fang, Y. Yu, B. Zou, L. Wang, Y. Tian, J. Cheng, B. Z. Tang, Z. Li, Matter 2020, 3, 449–463;
- 1bY. Huang, X. Zheng, Z. Yao, W. Lv, S. Xiang, Q. Ling, Z. Lin, Chem. Eng. J. 2022, 444, 136629;
- 1cJ. Song, L. Ma, S. Sun, H. Tian, X. Ma, Angew. Chem. Int. Ed. 2022, 61, e202206157;
- 1dS. Kim, S. J. Yoon, S. Y. Park, J. Am. Chem. Soc. 2012, 134, 12091–12097.
- 2
- 2aM. Wang, F. Li, Y. Lei, F. Xiao, M. Liu, S. Liu, X. Huang, H. Wu, Q. Zhao, Chem. Eng. J. 2022, 429, 132288;
- 2bX. Li, C. Peng, Y. Xiao, D. Xue, B. Luo, X.-C. Huang, J. Phys. Chem. C 2021, 125, 25112–25118.
- 3
- 3aK. Yao, Y. Li, Y. Shen, Y. Quan, Y. Cheng, J. Mater. Chem. C 2021, 9, 12590–12595;
- 3bM. Hu, F. Y. Ye, C. Du, W. Wang, W. Yu, M. Liu, Y. S. Zheng, Angew. Chem. Int. Ed. 2022, 61, e202115216;
- 3cB. Zhao, X. Gao, N. Lu, J. Deng, Adv. Opt. Mater. 2020, 8, 2000858;
- 3dZ. Wang, X. Wang, Z. Chen, Y. Liu, H. Xie, J. Xue, L. Mao, Y. Yan, H. Lu, Angew. Chem. Int. Ed. 2023, 62, e202215206.
- 4
- 4aM. Xu, Z. Xu, M. A. Soto, Y. T. Xu, W. Y. Hamad, M. J. MacLachlan, Adv. Mater. 2023, 2301060;
- 4bC. Zhang, Z. S. Li, X. Y. Dong, Y. Y. Niu, S. Q. Zang, Adv. Mater. 2022, 34, 2109496;
- 4cW. Shang, X. Zhu, T. Liang, C. Du, L. Hu, T. Li, M. Liu, Angew. Chem. Int. Ed. 2020, 59, 12811–12816;
- 4dQ. Guo, M. Zhang, Z. Tong, S. Zhao, Y. Zhou, Y. Wang, S. Jin, J. Zhang, H. B. Yao, M. Zhu, T. Zhuang, J. Am. Chem. Soc. 2023, 145, 4246–4253.
- 5
- 5aG. Long, R. Sabatini, M. I. Saidaminov, G. Lakhwani, A. Rasmita, X. Liu, E. H. Sargent, W. Gao, Nat. Rev. Mater. 2020, 5, 423–439;
- 5bD. Li, X. Liu, W. Wu, Y. Peng, S. Zhao, L. Li, M. Hong, J. Luo, Angew. Chem. Int. Ed. 2021, 60, 8415–8418;
- 5cJ. Ahn, S. Ma, J. Y. Kim, J. Kyhm, W. Yang, J. A. Lim, N. A. Kotov, J. Moon, J. Am. Chem. Soc. 2020, 142, 4206–4212;
- 5dL. S. Li, Y. H. Tan, W. J. Wei, H. Q. Gao, Y. Z. Tang, X. B. Han, ACS Appl. Mater. Interfaces 2021, 13, 2044–2051;
- 5eN. Dehnhardt, M. Axt, J. Zimmermann, M. Yang, G. Mette, J. Heine, Chem. Mater. 2020, 32, 4801–4807;
- 5fY. Lu, Q. Wang, R. He, F. Zhou, X. Yang, D. Wang, H. Cao, W. He, F. Pan, Z. Yang, C. Song, Angew. Chem. Int. Ed. 2021, 60, 23578–23583.
- 6
- 6aJ. T. Lin, D. G. Chen, L. S. Yang, T. C. Lin, Y. H. Liu, Y. C. Chao, P. T. Chou, C. W. Chiu, Angew. Chem. Int. Ed. 2021, 60, 21434–21440;
- 6bY. Han, S. Yue, B. B. Cui, Adv. Sci. 2021, 8, 2004805;
- 6cH. Lin, C. Zhou, J. Neu, Y. Zhou, D. Han, S. Chen, M. Worku, M. Chaaban, S. Lee, E. Berkwits, T. Siegrist, M. H. Du, B. Ma, Adv. Opt. Mater. 2019, 7, 1801474.
- 7
- 7aC. Li, Z. Luo, Y. Liu, Y. Wei, X. He, Z. Chen, L. Zhang, Y. Chen, W. Wang, Y. Liu, X. Chang, Z. Quan, Adv. Opt. Mater. 2022, 10, 2102746;
- 7bJ. Zhou, M. Li, L. Ning, R. Zhang, M. S. Molokeev, J. Zhao, S. Yang, K. Han, Z. Xia, J. Phys. Chem. Lett. 2019, 10, 1337–1341;
- 7cR. Zhang, X. Xu, X. Mao, Z. Wang, P. Wang, Y. Yang, J. Chen, R. Lu, W. Deng, K. Han, Laser Photonics Rev. 2022, 16, 2100689.
- 8
- 8aM. E. Sun, Y. Li, X. Y. Dong, S. Q. Zang, Chem. Sci. 2019, 10, 3836–3839;
- 8bD.-Y. Li, J.-H. Song, Z.-Y. Xu, Y.-J. Gao, X. Yin, Y.-H. Hou, L.-J. Feng, C.-Y. Yue, H. Fei, X.-W. Lei, Chem. Mater. 2022, 34, 6985–6995;
- 8cL. Gong, F. Huang, Z. Zhang, Y. Zhong, J. Jin, K.-z. Du, X. Huang, Chem. Eng. J. 2021, 424, 130544;
- 8dC. Zhou, Y. Tian, M. Wang, A. Rose, T. Besara, N. K. Doyle, Z. Yuan, J. C. Wang, R. Clark, Y. Hu, T. Siegrist, S. Lin, B. Ma, Angew. Chem. Int. Ed. 2017, 56, 9018–9022;
- 8eO. Toma, M. Allain, F. Meinardi, A. Forni, C. Botta, N. Mercier, Angew. Chem. Int. Ed. 2016, 128, 8130–8134;
10.1002/ange.201602602 Google Scholar
- 8fZ. Wang, X. Huang, Chem. Eur. J. 2022, 28, e202200609;
- 8gY. Tian, H. Peng, Q. Wei, Y. Chen, J. Xia, W. Lin, C. Peng, X. He, B. Zou, Chem. Eng. J. 2023, 458, 141436.
- 9
- 9aM. Li, Y. Wang, L. Yang, Z. Chai, Y. Wang, S. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208440;
- 9bJ. X. Gao, W. Y. Zhang, Z. G. Wu, Y. X. Zheng, D. W. Fu, J. Am. Chem. Soc. 2020, 142, 4756–4761;
- 9cY. Dang, X. Liu, B. Cao, X. Tao, Matter 2021, 4, 794–820.
- 10
- 10aK. H. Jin, Y. Zhang, K. J. Li, M. E. Sun, X. Y. Dong, Q. L. Wang, S. Q. Zang, Angew. Chem. Int. Ed. 2022, 61, e202205317;
- 10bY. Peng, X. Liu, L. Li, Y. Yao, H. Ye, X. Shang, X. Chen, J. Luo, J. Am. Chem. Soc. 2021, 143, 14077–14082;
- 10cW. Wu, X. Shang, Z. Xu, H. Ye, Y. Yao, X. Chen, M. Hong, J. Luo, L. Li, Adv. Sci. 2023, 10, 2206070.
- 11Y. Wei, C. Li, Y. Li, Z. Luo, X. Wu, Y. Liu, L. Zhang, X. He, W. Wang, Z. Quan, Angew. Chem. Int. Ed. 2022, 61, e202212685.
- 12Q. Liu, H. Peng, J. C. Qi, Y. Z. Lu, S. J. Yang, W. Q. Liao, Chem. Commun. 2023, 59, 1793–1796.
- 13
- 13aL. Lian, P. Zhang, X. Zhang, Q. Ye, W. Qi, L. Zhao, J. Gao, D. Zhang, J. Zhang, ACS Appl. Mater. Interfaces 2021, 13, 58908–58915;
- 13bC. Zhou, M. Worku, J. Neu, H. Lin, Y. Tian, S. Lee, Y. Zhou, D. Han, S. Chen, A. Hao, P. I. Djurovich, T. Siegrist, M.-H. Du, B. Ma, Chem. Mater. 2018, 30, 2374–2378;
- 13cZ. Li, Y. Li, P. Liang, T. Zhou, L. Wang, R.-J. Xie, Chem. Mater. 2019, 31, 9363–9371.
- 14H. Liu, T. B. Shonde, F. Gonzalez, O. J. Olasupo, S. Lee, D. Luong, X. Lin, J. S. R. Vellore Winfred, E. Lochner, I. Fatima, K. Hanson, B. Ma, Adv. Mater. 2023, 35, 2209417.
- 15
- 15aH.-L. Liu, H.-Y. Ru, M.-E. Sun, Z.-Y. Wang, S.-Q. Zang, Sci. China Chem. 2023, 66, 1425–1434;
- 15bD.-Y. Li, Y.-M. Sun, X.-Y. Wang, N.-N. Wang, X.-Y. Zhang, C.-Y. Yue, X.-W. Lei, J. Phys. Chem. Lett. 2022, 13, 6635–6643.
- 16
- 16aJ. L. Li, Y. F. Sang, L. J. Xu, H. Y. Lu, J. Y. Wang, Z. N. Chen, Angew. Chem. Int. Ed. 2022, 61, e202113450;
- 16bJ. Luo, X. Wang, S. Li, J. Liu, Y. Guo, G. Niu, L. Yao, Y. Fu, L. Gao, Q. Dong, C. Zhao, M. Leng, F. Ma, W. Liang, L. Wang, S. Jin, J. Han, L. Zhang, J. Etheridge, J. Wang, Y. Yan, E. H. Sargent, J. Tang, Nature 2018, 563, 541–545.
- 17P. Han, X. Zhang, X. Mao, B. Yang, S. Yang, Z. Feng, D. Wei, W. Deng, T. Pullerits, K. Han, Sci. China Chem. 2019, 62, 1405–1413.
- 18
- 18aX. Wang, W. Meng, W. Liao, J. Wang, R. G. Xiong, Y. Yan, J. Phys. Chem. Lett. 2019, 10, 501–506;
- 18bY. Zhang, X. Liu, H. Sun, J. Zhang, X. Gao, C. Yang, Q. Li, H. Jiang, J. Wang, D. Xu, Angew. Chem. Int. Ed. 2021, 60, 7587–7592.
- 19
- 19aY. Zheng, X. Han, P. Cheng, X. Jia, J. Xu, X.-H. Bu, J. Am. Chem. Soc. 2022, 144, 16471–16479;
- 19bJ. Chen, X. Pan, X. Zhang, C. Sun, C. Chen, X. Ji, R. Chen, L. Mao, Small 2023, 19, 2300938.
- 20Deposition numbers 2248663, 2248661, 2248662 and 2248660 (for compounds 1, 2, 3 and 4, respectively) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.