Atomic Insights into Synergistic Nitroarene Hydrogenation over Nanodiamond-Supported Pt1−Fe1 Dual-Single-Atom Catalyst
Pengcheng Deng
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally in this work.
Search for more papers by this authorJianglin Duan
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally in this work.
Search for more papers by this authorFenli Liu
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Dr. Na Yang
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 China
Search for more papers by this authorDr. Huibin Ge
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorProf. Jie Gao
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Dr. Haifeng Qi
Department of Renewable Resources, Leibniz-Institut für Katalyse, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
Search for more papers by this authorDr. Dan Feng
Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorDr. Man Yang
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048 China
Search for more papers by this authorCorresponding Author
Prof. Yong Qin
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Dr. Yujing Ren
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorPengcheng Deng
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally in this work.
Search for more papers by this authorJianglin Duan
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
These authors contributed equally in this work.
Search for more papers by this authorFenli Liu
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Dr. Na Yang
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731 China
Search for more papers by this authorDr. Huibin Ge
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorProf. Jie Gao
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorCorresponding Author
Dr. Haifeng Qi
Department of Renewable Resources, Leibniz-Institut für Katalyse, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
Search for more papers by this authorDr. Dan Feng
Analytical & Testing Center, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorDr. Man Yang
School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048 China
Search for more papers by this authorCorresponding Author
Prof. Yong Qin
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001 China
Search for more papers by this authorCorresponding Author
Dr. Yujing Ren
Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072 China
Search for more papers by this authorGraphical Abstract
A simple method was developed for Pt1−Fe1/nanodiamond dual-single-atom catalyst construction. Synergistic chemoselective hydrogenation of nitroarenes was achieved, whereby hydrogen is activated on the Pt1−Fe1 dual site and nitro group is preferentially adsorbed at the Fe1 site. The activation energy is decreased, resulting in an appreciable catalytic performance (3.1 s−1 turnover frequency, ca. 100 % selectivity, and a scope of 24 substrates).
Abstract
Fundamental understanding of the synergistic effect of bimetallic catalysts is of extreme significance in heterogeneous catalysis, but a great challenge lies in the precise construction of uniform dual-metal sites. Here, we develop a novel method for constructing Pt1−Fe1/ND dual-single-atom catalyst, by anchoring Pt single atoms on Fe1−N4 sites decorating a nanodiamond (ND) surface. Using this catalyst, the synergy of nitroarenes selective hydrogenation is revealed. In detail, hydrogen is activated on the Pt1−Fe1 dual site and the nitro group is strongly adsorbed on the Fe1 site via a vertical configuration for subsequent hydrogenation. Such synergistic effect decreases the activation energy and results in an unprecedented catalytic performance (3.1 s−1 turnover frequency, ca. 100 % selectivity, 24 types of substrates). Our findings advance the applications of dual-single-atom catalysts in selective hydrogenations and open up a new way to explore the nature of synergistic catalysis at the atomic level.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307853-sup-0001-misc_information.pdf13.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aL. L. Zhang, M. X. Zhou, A. Q. Wang, T. Zhang, Chem. Rev. 2020, 120, 683–733;
- 1bL. Liu, A. Corma, Chem. Rev. 2018, 118, 4981–5079;
- 1cH. M. T. Galvis, J. H. Bitter, C. B. Khare, M. Ruitenbeek, A. I. Dugulan, K. P. de Jong, Science 2012, 335, 835–838;
- 1dL. C. Liu, A. Corma, Nat. Rev. Mater. 2021, 6, 244–263;
- 1eM. Sankar, Q. He, R. V. Engel, M. A. Sainna, A. J. Logsdail, A. Roldan, D. J. Willock, N. Agarwal, C. J. Kiely, G. J. Hutchings, Chem. Rev. 2020, 120, 3890–3938.
- 2
- 2aY. Tang, Y. C. Wei, Z. Y. Wang, S. R. Zhang, Y. T. Li, L. Nguyen, Y. X. Li, Y. Zhou, W. J. Shen, F. F. Tao, P. J. Hu, J. Am. Chem. Soc. 2019, 141, 7283–7293;
- 2bJ. H. Fu, J. H. Dong, R. Si, K. J. Sun, J. Y. Zhang, M. R. Li, N. N. Yu, B. S. Zhang, M. G. Humphrey, Q. Fu, J. H. Huang, ACS Catal. 2021, 11, 1952–1961;
- 2cY. Zhao, H. Zhou, X. Zhu, Y. Qu, C. Xiong, Z. Xue, Q. Zhang, X. Liu, F. Zhou, X. Mou, W. Wang, M. Chen, Y. Xiong, X. Lin, Y. Lin, W. Chen, H.-J. Wang, Z. Jiang, L. Zheng, T. Yao, J. Dong, S. Wei, W. Huang, L. Gu, J. Luo, Y. Li, Y. Wu, Nat. Catal. 2021, 4, 134–143;
- 2dX. J. Zeng, J. L. Shui, X. F. Liu, Q. T. Liu, Y. C. Li, J. X. Shang, L. R. Zheng, R. H. Yu, Adv. Energy Mater. 2018, 8, 1701345.
- 3
- 3aW. T. Yuan, B. E. Zhu, K. Fang, X. Y. Li, T. W. Hansen, Y. Ou, H. S. Yang, J. B. Wagner, Y. Gao, Y. Wang, Z. Zhang, Science 2021, 371, 517–521;
- 3bM. Cargnello, V. V. T. Doan-Nguyen, T. R. Gordon, R. E. Diaz, E. A. Stach, R. J. Gorte, P. Fornasiero, C. B. Murray, Science 2013, 341, 771–773;
- 3cQ. Fu, W. X. Li, Y. X. Yao, H. Y. Liu, H. Y. Su, D. Ma, X. K. Gu, L. M. Chen, Z. Wang, H. Zhang, B. Wang, X. H. Bao, Science 2010, 328, 1141–1144;
- 3dY. G. Wang, D. Mei, V. A. Glezakou, J. Li, R. Rousseau, Nat. Commun. 2015, 6, 6511;
- 3eJ. Zhang, H. Xiao, C. Du, X. Qin, S. Li, J. Sun, J. Fang, C. Zhang, ACS Catal. 2022, 12, 9812–9822;
- 3fM. Yang, K. Y. Wu, S. D. Sun, Y. J. Ren, Appl. Catal. B 2022, 307, 121207;
- 3gY. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige, Appl. Catal. B 2011, 105, 117–127;
- 3hS. Koso, N. Ueda, Y. Shinmi, K. Okumura, T. Kizuka, K. Tomishige, J. Catal. 2009, 267, 89–92.
- 4
- 4aB. T. Qiao, A. Q. Wang, X. F. Yang, L. F. Allard, Z. Jiang, Y. T. Cui, J. Y. Liu, J. Li, T. Zhang, Nat. Chem. 2011, 3, 634–641;
- 4bL. L. Han, H. Cheng, W. Liu, H. Q. Li, P. F. Ou, R. Q. Lin, H. T. Wang, C. W. Pao, A. R. Head, C. H. Wang, X. Tong, C. J. Sun, W. F. Pong, J. Luo, J. C. Zheng, H. L. L. Xin, Nat. Mater. 2022, 21, 681–688;
- 4cX. H. He, H. Zhang, X. C. Zhang, Y. Zhang, Q. He, H. Y. Chen, Y. J. Cheng, M. Peng, X. T. Qin, H. B. Ji, D. Ma, Nat. Commun. 2022, 13, 5721;
- 4dJ. Y. Liu, ACS Catal. 2017, 7, 34–59.
- 5
- 5aY. Xiong, J. C. Dong, Z. Q. Huang, P. Y. Xin, W. X. Chen, Y. Wang, Z. Li, Z. Jin, W. Xing, Z. B. Zhuang, J. Y. Ye, X. Wei, R. Cao, L. Gu, S. G. Sun, L. Zhuang, X. Q. Chen, H. Yang, C. Chen, Q. Peng, C. R. Chang, D. S. Wang, Y. D. Li, Nat. Nanotechnol. 2020, 15, 390–397;
- 5bP. X. Liu, Y. Zhao, R. X. Qin, S. G. Mo, G. X. Chen, L. Gu, D. M. Chevrier, P. Zhang, Q. Guo, D. D. Zang, B. H. Wu, G. Fu, N. F. Zheng, Science 2016, 352, 797–801;
- 5cB. Singh, M. B. Gawande, A. D. Kute, R. S. Varma, P. Fornasiero, P. McNeice, R. V. Jagadeesh, M. Beller, R. Zboril, Chem. Rev. 2021, 121, 13620–13697;
- 5dW. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, J. Am. Chem. Soc. 2017, 139, 10790–10798;
- 5eB. Hu, K. Sun, Z. Zhuang, Z. Chen, S. Liu, W. C. Cheong, C. Chen, M. Hu, X. Cao, J. Ma, R. Tu, X. Zheng, H. Xiao, X. Chen, Y. Cui, Q. Peng, C. Chen, Y. Li, Adv. Mater. 2022, 34, 2107721;
- 5fC. L. Wang, X. K. Gu, H. Yan, Y. Lin, J. J. Li, D. D. Liu, W. X. Li, J. L. Lu, ACS Catal. 2017, 7, 887–891;
- 5gX. J. Cui, W. Li, P. Ryabchuk, K. Junge, M. Beller, Nat. Catal. 2018, 1, 385–397;
- 5hJ. L. Duan, Y. A. Zhou, Y. J. Ren, D. Feng, J. L. Shang, H. B. Ge, J. Gao, J. L. Yang, Y. Qin, Nano Res. 2022, 15, 5970–5976;
- 5iL. L. Zhang, Y. J. Ren, W. G. Liu, A. Q. Wang, T. Zhang, Natl. Sci. Rev. 2018, 5, 653–672;
- 5jD. B. Liu, X. Y. Li, S. M. Chen, H. Yang, C. D. Wang, C. Q. Wu, Y. A. Haleem, S. Duan, J. L. Lu, B. H. Ge, P. M. Ajayan, Y. Luo, J. Jiang, L. Song, Nat. Energy 2019, 4, 512–518;
- 5kH. B. Yang, S. F. Hung, S. Liu, K. D. Yuan, S. Miao, L. P. Zhang, X. Huang, H. Y. Wang, W. Z. Cai, R. Chen, J. J. Gao, X. F. Yang, W. Chen, Y. Q. Huang, H. M. Chen, C. M. Li, T. Zhang, B. Liu, Nat. Energy 2018, 3, 140–147.
- 6
- 6aY. Ren, Y. Tang, L. Zhang, X. Liu, L. Li, S. Miao, D. Sheng Su, A. Wang, J. Li, T. Zhang, Nat. Commun. 2019, 10, 4500;
- 6bL. L. Wang, C. W. Zhu, M. Q. Xu, C. L. Zhao, J. Gu, L. N. Cao, X. H. Zhang, Z. H. Sun, S. Q. Wei, W. Zhou, W. X. Li, J. L. Lu, J. Am. Chem. Soc. 2021, 143, 18854–18858;
- 6cG. Sun, Z. J. Zhao, R. Mu, S. Zha, L. Li, S. Chen, K. Zang, J. Luo, Z. Li, S. C. Purdy, A. J. Kropf, J. T. Miller, L. Zeng, J. Gong, Nat. Commun. 2018, 9, 4454;
- 6dL. DeRita, J. Resasco, S. Dai, A. Boubnov, H. V. Thang, A. S. Hoffman, I. Ro, G. W. Graham, S. R. Bare, G. Pacchioni, X. Q. Pan, P. Christopher, Nat. Mater. 2019, 18, 746–751;
- 6eJ. Yang, H. F. Qi, A. Q. Li, X. Y. Liu, X. F. Yang, S. X. Zhang, Q. Zhao, Q. K. Jiang, Y. Su, L. L. Zhang, J. F. Li, Z. Q. Tian, W. Liu, A. Q. Wang, T. Zhang, J. Am. Chem. Soc. 2022, 144, 12062–12071.
- 7
- 7aI. Ro, J. Qi, S. Lee, M. J. Xu, X. X. Yan, Z. H. Xie, G. Zakem, A. Morales, J. G. G. Chen, X. Q. Pan, D. G. Vlachos, S. Caratzoulas, P. Christopher, Nature 2022, 609, 287–292;
- 7bR. J. Gao, J. Wang, Z. F. Huang, R. R. Zhang, W. Wang, L. Pan, J. F. Zhang, W. K. Zhu, X. W. Zhang, C. X. Shi, J. Lim, J. J. Zou, Nat. Energy 2021, 6, 614–623;
- 7cF. Huang, M. Peng, Y. L. Chen, X. B. Cai, X. T. Qin, N. Wang, D. Q. Xiao, L. Jin, G. Q. Wang, X. D. Wen, H. Y. Liu, D. Ma, J. Am. Chem. Soc. 2022, 144, 18485–18493;
- 7dS. Chen, B. B. Gong, J. Gu, Y. Lin, B. Yang, Q. Q. Gu, R. Jin, Q. Liu, W. X. Ying, X. X. Shi, W. L. Xu, L. H. Cai, Y. Li, Z. H. Sun, S. Q. Wei, W. H. Zhang, J. L. Lu, Angew. Chem. Int. Ed. 2022, 61, e202211919;
- 7eW. Qu, H. Yuan, Z. Ren, J. Qi, D. Xu, J. Chen, L. Chen, H. Yang, Z. Ma, X. Liu, H. Wang, X. Tang, Angew. Chem. Int. Ed. 2022, 61, e202212703.
- 8
- 8aC. X. Zhao, B. Q. Li, J. N. Liu, Q. Zhang, Angew. Chem. Int. Ed. 2021, 60, 4448–4463;
- 8bC. He, Z. Y. Wu, L. Zhao, M. Ming, Y. Zhang, Y. P. Yi, J. S. Hu, ACS Catal. 2019, 9, 7311–7317.
- 9K. L. Ding, D. A. Cullen, L. B. Zhang, Z. Cao, A. D. Roy, I. N. Ivanov, D. M. Cao, Science 2018, 362, 560–564.
- 10
- 10aJ. Wang, Z. Q. Huang, W. Liu, C. R. Chang, H. L. Tang, Z. J. Li, W. X. Chen, C. J. Jia, T. Yao, S. Q. Wei, Y. Wu, Y. D. Lie, J. Am. Chem. Soc. 2017, 139, 17281–17284;
- 10bZ. Y. Lu, B. F. Wang, Y. F. Hu, W. Liu, Y. F. Zhao, R. O. Yang, Z. P. Li, J. Luo, B. Chi, Z. Jiang, M. S. Li, S. C. Mu, S. J. Liao, J. J. Zhang, X. L. Sun, Angew. Chem. Int. Ed. 2019, 58, 2622–2626;
- 10cL. Zhang, R. T. Si, H. S. Liu, N. Chen, Q. Wang, K. Adair, Z. Q. Wang, J. T. Chen, Z. X. Song, J. J. Li, M. N. Banis, R. Y. Li, T. K. Sham, M. Gu, L. M. Liu, G. A. Botton, X. L. Sun, Nat. Commun. 2019, 10, 4936;
- 10dJ. Yang, W. Z. Fu, C. Q. Chen, W. Y. Chen, W. G. Huang, R. O. Yang, Q. Q. Kong, B. Y. Zhang, J. X. Zhao, C. M. Chen, J. Luo, F. Yang, X. Z. Duan, Z. Jiang, Y. Qin, ACS Catal. 2021, 11, 4146–4156.
- 11Q. Zou, Y. G. Li, L. H. Zou, M. Z. Wang, Mater. Charact. 2009, 60, 1257–1262.
- 12J. Haber, J. Stoch, L. Ungier, J. Solid State Chem. 1976, 19, 113–115.
- 13
- 13aW. H. Li, J. Yang, D. Wang, Angew. Chem. Int. Ed. 2022, 61, e202213318;
- 13bZ. P. Zeng, L. Y. Gan, H. B. Yang, X. Z. Su, J. J. Gao, W. Liu, H. Matsumoto, J. Gong, J. M. Zhang, W. Z. Cai, Z. Y. Zhang, Y. B. Yan, B. Liu, P. Chen, Nat. Commun. 2021, 12, 4088.
- 14A. Wang, J. Li, T. Zhang, Nat. Chem. Rev. 2018, 2, 65–81.
- 15Z. Jia, X. Qin, Y. Chen, X. Cai, Z. Gao, M. Peng, F. Huang, D. Xiao, X. Wen, N. Wang, Z. Jiang, W. Zhou, H. Liu, D. Ma, Nat. Commun. 2022, 13, 6798.
- 16Y. Tan, X. Y. Liu, L. Zhang, A. Wang, L. Li, X. Pan, S. Miao, M. Haruta, H. Wei, H. Wang, F. Wang, X. Wang, T. Zhang, Angew. Chem. Int. Ed. 2017, 56, 2709–2713.
- 17Y. Ma, Y. J. Ren, Y. N. Zhou, W. Liu, W. Baaziz, O. Ersen, C. Pham-Huu, M. Greiner, W. Chu, A. Q. Wang, T. Zhang, Y. F. Liu, Angew. Chem. Int. Ed. 2020, 59, 21613–21619.
- 18M. Tamura, N. Yuasa, Y. Nakagawa, K. Tomishige, Chem. Commun. 2017, 53, 3377–3380.