Semiconducting Polymers Based on Simple Electron-Deficient Cyanated trans-1,3-Butadienes for Organic Field-Effect Transistors
Dr. Jianfeng Li
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Zhicai Chen
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228 Haikou, Hainan, China
These authors contributed equally to this work.
Search for more papers by this authorJunwei Wang
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorSang Young Jeong
Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841 Seoul, South Korea
Search for more papers by this authorDr. Kun Yang
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, Hunan, China
Search for more papers by this authorDr. Kui Feng
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorJie Yang
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorDr. Bin Liu
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorProf. Dr. Han Young Woo
Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841 Seoul, South Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Xugang Guo
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Songshan Lake Materials Laboratory, 523808 Dongguan, Guangdong, China
Search for more papers by this authorDr. Jianfeng Li
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Zhicai Chen
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Department State Key Laboratory of Marine Resource Utilization in South China Sea, College of Materials Science and Engineering, Hainan University, 570228 Haikou, Hainan, China
These authors contributed equally to this work.
Search for more papers by this authorJunwei Wang
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorSang Young Jeong
Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841 Seoul, South Korea
Search for more papers by this authorDr. Kun Yang
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, Hunan, China
Search for more papers by this authorDr. Kui Feng
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorJie Yang
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorDr. Bin Liu
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Search for more papers by this authorProf. Dr. Han Young Woo
Research Institute for Natural Sciences, Department of Chemistry, Korea University, 02841 Seoul, South Korea
Search for more papers by this authorCorresponding Author
Prof. Dr. Xugang Guo
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), 518055 Shenzhen, Guangdong, China
Songshan Lake Materials Laboratory, 523808 Dongguan, Guangdong, China
Search for more papers by this authorGraphical Abstract
Sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene has led to a series of structurally simple but highly electron-deficient building blocks for semiconducting polymers having unipolar n-type transport character with electron mobilities of >1 cm2 V−1 s−1 in organic field-effect transistors. The study offers inspiration for developing structurally simple electron-deficient units for high-performance n-type polymers.
Abstract
Developing high-performance but low-cost n-type polymers remains a significant challenge in the commercialization of organic field-effect transistors (OFETs). To achieve this objective, it is essential to design the key electron-deficient units with simple structures and facile preparation processes, which can facilitate the production of low-cost n-type polymers. Herein, by sequentially introducing fluorine and cyano functionalities onto trans-1,3-butadiene, we developed a series of structurally simple but highly electron-deficient building blocks, namely 1,4-dicyano-butadiene (CNDE), 3-fluoro-1,4-dicyano-butadiene (CNFDE), and 2,3-difluoro-1,4-dicyano-butadiene (CNDFDE), featuring a highly coplanar backbone and deep-positioned lowest unoccupied molecular orbital (LUMO) energy levels (−3.03–4.33 eV), which render them highly attractive for developing n-type semiconducting polymers. Notably, all these electron-deficient units can be easily accessed by a two-step high-yield synthetic procedure from low-cost raw materials, thus rendering them highly promising candidates for commercial applications. Upon polymerization with diketopyrrolopyrrole (DPP), three copolymers were developed that demonstrated unipolar n-type transport characteristics in OFETs with the highest electron mobility of >1 cm2 V−1 s−1. Hence, CNDE, CNFDE, and CNDFDE represent a class of novel, simple, and efficient electron-deficient units for constructing low-cost n-type polymers, thereby providing valuable insight for OFET applications.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307647-sup-0001-misc_information.pdf2.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aX. Guo, A. Facchetti, Nat. Mater. 2020, 19, 922–928;
- 1bJ. Yang, Z. Zhao, S. Wang, Y. Guo, Y. Liu, Chem 2018, 4, 2748–2785;
- 1cA. F. Paterson, S. Singh, K. J. Fallon, T. Hodsden, Y. Han, B. C. Schroeder, H. Bronstein, M. Heeney, I. McCulloch, T. D. Anthopoulos, Adv. Mater. 2018, 30, 1801079;
- 1dZ. Genene, W. Mammo, E. Wang, M. R. Andersson, Adv. Mater. 2019, 31, 1807275;
- 1eB. Russ, A. Glaudell, J. J. Urban, M. L. Chabinyc, R. A. Segalman, Nat. Rev. Mater. 2016, 1, 16050.
- 2
- 2aK. Gao, Y. Kan, X. Chen, F. Liu, B. Kan, L. Nian, X. Wan, Y. Chen, X. Peng, T. P. Russell, Y. Cao, A. K.-Y. Jen, Adv. Mater. 2020, 32, 1906129;
- 2bC. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, A. J. Heeger, Nano Lett. 2014, 14, 2764–2771;
- 2cA. J. Heeger, Chem. Soc. Rev. 2010, 39, 2354–2371.
- 3
- 3aJ. Chen, J. Yang, Y. Guo, Y. Liu, Adv. Mater. 2022, 34, 2104325;
- 3bY. Wang, T. Hasegawa, H. Matsumoto, T. Michinobu, J. Am. Chem. Soc. 2019, 141, 3566–3575;
- 3cY. Wang, H. Guo, A. Harbuzaru, M. A. Uddin, I. Arrechea-Marcos, S. Ling, J. Yu, Y. Tang, H. Sun, J. T. López Navarrete, R. P. Ortiz, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2018, 140, 6095–6108.
- 4
- 4aC. Zhu, Z. Zhao, H. Chen, L. Zheng, X. Li, J. Chen, Y. Sun, F. Liu, Y. Guo, Y. Liu, J. Am. Chem. Soc. 2017, 139, 17735–17738;
- 4bH. Sun, X. Guo, A. Facchetti, Chem 2020, 6, 1310–1326;
- 4cB. J. Eckstein, F. S. Melkonyan, E. F. Manley, S. Fabiano, A. R. Mouat, L. X. Chen, A. Facchetti, T. J. Marks, J. Am. Chem. Soc. 2017, 139, 14356–14359.
- 5Z. Yi, S. Wang, Y. Liu, Adv. Mater. 2015, 27, 3589–3606.
- 6
- 6aY. Shi, H. Guo, M. Qin, J. Zhao, Y. Wang, H. Wang, Y. Wang, A. Facchetti, X. Lu, X. Guo, Adv. Mater. 2018, 30, 1705745;
- 6bY. Shi, H. Guo, M. Qin, Y. Wang, J. Zhao, H. Sun, H. Wang, Y. Wang, X. Zhou, A. Facchetti, X. Lu, M. Zhou, X. Guo, Chem. Mater. 2018, 30, 7988–8001;
- 6cC. Dong, S. Deng, B. Meng, J. Liu, L. Wang, Angew. Chem. Int. Ed. 2021, 60, 16184–16190.
- 7
- 7aX. Wei, W. Zhang, G. Yu, Adv. Funct. Mater. 2021, 31, 2010979;
- 7bC. Zhang, W. L. Tan, Z. Liu, Q. He, Y. Li, J. Ma, A. S. R. Chesman, Y. Han, C. R. McNeill, M. Heeney, Z. Fei, Macromolecules 2022, 55, 4429–4440.
- 8
- 8aX. Guo, A. Facchetti, T. J. Marks, Chem. Rev. 2014, 114, 8943–9021;
- 8bN. B. Kolhe, S. M. West, D. K. Tran, X. Ding, D. Kuzuhara, N. Yoshimoto, T. Koganezawa, S. A. Jenekhe, Chem. Mater. 2020, 32, 195–204;
- 8cH. Li, F. S. Kim, G. Ren, S. A. Jenekhe, J. Am. Chem. Soc. 2013, 135, 14920–14923.
- 9
- 9aT. Shen, W. Li, Y. Zhao, Y. Wang, Y. Liu, Adv. Mater. 2023, 35, 2210093;
- 9bI. Osaka, T. Abe, M. Shimawaki, T. Koganezawa, K. Takimiya, ACS Macro Lett. 2012, 1, 437–440;
- 9cI. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, J. Am. Chem. Soc. 2013, 135, 8834–8837.
- 10
- 10aR. Zhao, J. Liu, L. Wang, Acc. Chem. Res. 2020, 53, 1557–1567;
- 10bY. Cao, C. Zhu, M. Barłóg, K. P. Barker, X. Ji, A. J. Kalin, M. Al-Hashimi, L. Fang, J. Org. Chem. 2021, 86, 2100–2106.
- 11
- 11aJ. Li, K. Yang, D. Wang, B. Liu, Y. Wang, S. Y. Jeong, Z. Chen, H. Y. Woo, X. Guo, Macromolecules 2023, 56, 2339–2347;
- 11bK. Feng, H. Guo, J. Wang, Y. Shi, Z. Wu, M. Su, X. Zhang, J. H. Son, H. Y. Woo, X. Guo, J. Am. Chem. Soc. 2021, 143, 1539–1552.
- 12
- 12aH. Sun, Y. Tang, C. W. Koh, S. Ling, R. Wang, K. Yang, J. Yu, Y. Shi, Y. Wang, H. Y. Woo, X. Guo, Adv. Mater. 2019, 31, 1807220;
- 12bW. Wang, Y. Li, C. Zhan, S. Xiao, C. Tang, G. Li, X. Lu, Q. Zhang, ACS Appl. Mater. Interfaces 2020, 12, 49876–49885.
- 13
- 13aA. S. Molinari, H. Alves, Z. Chen, A. Facchetti, A. F. Morpurgo, J. Am. Chem. Soc. 2009, 131, 2462–2463;
- 13bJ. Gao, C. Xiao, W. Jiang, Z. Wang, Org. Lett. 2014, 16, 394–397.
- 14Y. Kumar, S. Kumar, K. Mandal, P. Mukhopadhyay, Angew. Chem. Int. Ed. 2018, 57, 16318–16322.
- 15
- 15aK. Feng, J. Huang, X. Zhang, Z. Wu, S. Shi, L. Thomsen, Y. Tian, H. Y. Woo, C. R. McNeill, X. Guo, Adv. Mater. 2020, 32, 2001476;
- 15bP. Kafourou, M. I. Nugraha, A. Nikitaras, L. Tan, Y. Firdaus, F. Aniés, F. Eisner, B. Ding, J. Wenzel, M. Holicky, L. Tsetseris, T. D. Anthopoulos, M. Heeney, ACS Materials Lett. 2022, 4, 165–174;
- 15cK. Iguchi, T. Mikie, M. Saito, K. Komeyama, T. Seo, Y. Ie, I. Osaka, Chem. Mater. 2021, 33, 2218–2228;
- 15dP. Kafourou, B. Park, J. Luke, L. Tan, J. Panidi, F. Glöcklhofer, J. Kim, T. D. Anthopoulos, J.-S. Kim, K. Lee, S. Kwon, M. Heeney, Angew. Chem. Int. Ed. 2021, 60, 5970–5977;
- 15eA. Casey, Y. Han, Z. Fei, A. J. P. White, T. D. Anthopoulos, M. Heeney, J. Mater. Chem. C 2015, 3, 265–275.
- 16H. S. Kim, G. Huseynova, Y.-Y. Noh, D.-H. Hwang, Macromolecules 2017, 50, 7550–7558.
- 17H.-J. Yun, S.-J. Kang, Y. Xu, S. O. Kim, Y.-H. Kim, Y.-Y. Noh, S.-K. Kwon, Adv. Mater. 2014, 26, 7300–7307.
- 18
- 18aC. Wei, Z. Tang, W. Zhang, J. Huang, Y. Zhou, L. Wang, G. Yu, Polym. Chem. 2020, 11, 7340–7348;
- 18bY. Sui, Y. Deng, Y. Han, J. Zhang, W. Hu, Y. Geng, J. Mater. Chem. C 2018, 6, 12896–12903.
- 19Z. Fei, F. D. Eisner, X. Jiao, M. Azzouzi, J. A. Röhr, Y. Han, M. Shahid, A. S. R. Chesman, C. D. Easton, C. R. McNeill, T. D. Anthopoulos, J. Nelson, M. Heeney, Adv. Mater. 2018, 30, 1705209.
- 20
- 20aZ. Chen, J. Li, J. Wang, K. Yang, J. Zhang, Y. Wang, K. Feng, B. Li, Z. Wei, X. Guo, Angew. Chem. Int. Ed. 2022, 61, e202205315;
- 20bM. Al-Hashimi, M. A. Baklar, F. Colleaux, S. E. Watkins, T. D. Anthopoulos, N. Stingelin, M. Heeney, Macromolecules 2011, 44, 5194–5199.
- 21
- 21aA. J. Zahara, E. M. Hinds, A. L. Nguyen, S. M. Wilkerson-Hill, Org. Lett. 2020, 22, 8065–8069;
- 21bV. N. Telvekar, B. S. Takale, Tetrahedron Lett. 2010, 51, 3940–3943.
- 22
- 22aX. Gao, J. Shen, B. Hu, G. Tu, Macromol. Chem. Phys. 2014, 215, 1388–1395;
- 22bY. Zhang, F. Ren, Q. Li, Z. Zhang, X. He, Z. Chen, J. Shi, G. Tu, J. Mater. Chem. C 2018, 6, 4658–4662.
- 23
- 23aQ. Zhang, J. J. Rech, L. Yan, Q. Liang, Z. Peng, H. Ade, H. Wu, W. You, ACS Appl. Polym. Mater. 2019, 1, 3313–3322;
- 23bS. Shi, H. Wang, P. Chen, M. A. Uddin, Y. Wang, Y. Tang, H. Guo, X. Cheng, S. Zhang, H. Y. Woo, X. Guo, Polym. Chem. 2018, 9, 3873–3884.
- 24Y. Wang, H. Guo, S. Ling, I. Arrechea-Marcos, Y. Wang, J. T. López Navarrete, R. P. Ortiz, X. Guo, Angew. Chem. Int. Ed. 2017, 56, 9924–9929.
- 25Q. Liu, S. E. Bottle, P. Sonar, Adv. Mater. 2020, 32, 1903882.
- 26Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, F. Wang, Adv. Mater. 2015, 27, 6753–6759.
- 27Y. Wang, T. Hasegawa, H. Matsumoto, T. Michinobu, Angew. Chem. Int. Ed. 2019, 58, 11893–11902.
- 28
- 28aR. Di Pietro, T. Erdmann, J. H. Carpenter, N. Wang, R. R. Shivhare, P. Formanek, C. Heintze, B. Voit, D. Neher, H. Ade, A. Kiriy, Chem. Mater. 2017, 29, 10220–10232;
- 28bZ. Fei, L. Chen, Y. Han, E. Gann, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, M. Heeney, A. Pietrangelo, J. Am. Chem. Soc. 2017, 139, 8094–8097;
- 28cJ. Wang, K. Feng, S. Y. Jeong, B. Liu, Y. Wang, W. Wu, Y. Hou, H. Y. Woo, X. Guo, Polym. J. 2023, 55, 507–515.
- 29Deposition numbers 2265691 (for C4TCNDE) and 2265692 (for C4TCNDFDE) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.