Introducing Bidirectional Axial Coordination into BiVO4@Metal Phthalocyanine Core–Shell Photoanodes for Efficient Water Oxidation
Dr. Jin-Bo Pan
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBing-Hao Wang
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Sheng Shen
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorDr. Lang Chen
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shuang-Feng Yin
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorDr. Jin-Bo Pan
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
College of Chemical Engineering and Environment, State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Changping, 102249 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorBing-Hao Wang
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Dr. Sheng Shen
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorDr. Lang Chen
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Shuang-Feng Yin
College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Ministry of Education of Advanced Engineering Research Center for Catalysis, Hunan University, Changsha, 410082 P. R. China
Search for more papers by this authorGraphical Abstract
Pyrazine was adopted as axial coordination agent for the first time to construct core–shell BiVO4@metal polyphthalocyanine photoanode. The axial coordination of pyrazine facilitated the carrier transfer across the BiVO4 and metal phthalocyanine interface and endowed ZnCoFe polyphthalocyanine with lower Fe d band center and orbital spin, which improved the OER activity by promoting the *OOH desorption.
Abstract
Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm−2 at 1.23 VRHE. This study introduces a new approach for constructing core–shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202307246-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aY. Kuang, T. Yamada, K. Domen, Joule 2017, 1, 290–305;
- 1bR. Tang, S. Zhou, Z. Zhang, R. Zheng, J. Huang, Adv. Mater. 2021, 33, 2005389;
- 1cS. Wang, G. Liu, L. Wang, Chem. Rev. 2019, 119, 5192–5247;
- 1dM. Lee, J. Yang, I. Park, T. Lee, H. Park, W. Cheon, S. Lee, H. Lee, S. Ji, J. Suh, J. Moon, J. Kim, H. Jang, Carbon Energy 2023, 5, 321.
- 2
- 2aX. Ning, P. Du, Z. Han, J. Chen, X. Lu, Angew. Chem. Int. Ed. 2021, 60, 3504–3509;
- 2bP. Wang, D. Li, H. Chi, Y. Zhao, J. Wang, D. Li, S. Pang, P. Fu, J. Shi, C. Li, Angew. Chem. Int. Ed. 2021, 60, 6691–6698.
- 3
- 3aY. Wang, D. Chen, J. Zhang, M. S. Balogun, P. Wang, Y. Tong, Y. Huang, Adv. Funct. Mater. 2022, 32, 2112738;
- 3bB. Liu, X. Wang, Y. Zhang, L. Xu, T. Wang, X. Xiao, S. Wang, L. Wang, W. Huang, Angew. Chem. Int. Ed. 2023, 62, e202217346;
- 3cY. Song, X. Zhang, Y. Zhang, P. Zhai, Z. Li, D. Jin, J. Cao, C. Wang, B. Zhang, J. Gao, L. Sun, J. Hou, Angew. Chem. Int. Ed. 2022, 61, e202200946;
- 3dY. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen, D. Li, W. Liu, Y. Chen, T. Xie, J. Cui, C. Li, K. Domen, F. Zhang, Nat. Commun. 2022, 13, 484;
- 3eM. Lee, J. Yang, H. Park, C. Moon, D. Andoshe, J. Park, C. Moon, T. Lee, K. Choi, W. Cheon, J. Kim, H. Jang, Nano-Micro Lett. 2022, 14, 48.
- 4
- 4aV. Andrei, B. Reuillard, E. Reisner, Nat. Mater. 2020, 19, 189–194;
- 4bT. Kim, K.-S. Choi, Science 2014, 343, 990–994;
- 4cX. Zhang, P. Zhai, Y. Zhang, Y. Wu, C. Wang, L. Ran, J. Gao, Z. Li, B. Zhang, Z. Fan, L. Sun, J. Hou, J. Am. Chem. Soc. 2021, 143, 20657–20669;
- 4dJ. Yang, I. Park, S. Lee, M. Lee, T. Lee, H. Park, C. Kim, J. Park, J. Moon, J. Kim, H. Jang, Appl. Catal. B 2021, 293, 120217.
- 5J.-B. Pan, S. Shen, L. Chen, C.-T. Au, S.-F. Yin, Adv. Funct. Mater. 2021, 31, 2104269.
- 6
- 6aJ.-B. Pan, X. Liu, B.-H. Wang, Y.-A. Chen, H.-Y. Tan, J. Ouyang, W. Zhou, S. Shen, L. Chen, C.-T. Au, S.-F. Yin, Appl. Catal. B 2022, 315, 121526;
- 6bZ. Zhang, X. Huang, B. Zhang, Y. Bi, Energy Environ. Sci. 2022, 15, 2867–2873.
- 7
- 7aJ.-B. Pan, B.-H. Wang, J.-B. Wang, H.-Z. Ding, W. Zhou, X. Liu, J. Zhang, S. Shen, J.-K. Guo, L. Chen, C.-T. Au, L.-L. Jiang, S.-F. Yin, Angew. Chem. Int. Ed. 2021, 60, 1433–1440;
- 7bM. Beetz, S. Häringer, P. Elsässer, J. Kampmann, L. Sauerland, F. Wolf, M. Günther, A. Fischer, T. Bein, Adv. Funct. Mater. 2021, 31, 2011210.
- 8
- 8aJ. Wu, H. Zhou, Q. Li, M. Chen, J. Wan, N. Zhang, L. Xiong, S. Li, B. Y. Xia, G. Feng, M. Liu, L. Huang, Adv. Energy Mater. 2019, 9, 1900149;
- 8bP. Yu, L. Wang, F. Sun, Y. Xie, X. Liu, J. Ma, X. Wang, C. Tian, J. Li, H. Fu, Adv. Mater. 2019, 31, 1901666;
- 8cG. Chen, Y. An, S. Liu, F. Sun, H. Qi, H. Wu, Y. He, P. Liu, R. Shi, J. Zhang, A. Kuc, U. Kaiser, T. Zhang, T. Heine, G. Wu, X. Feng, Energy Environ. Sci. 2022, 15, 2619–2628.
- 9
- 9aS. Yang, Y. Yu, X. Gao, Z. Zhang, F. Wang, Chem. Soc. Rev. 2021, 50, 12985;
- 9bY. Kim, D. Kim, J. Lee, L. Y. S. Lee, D. K. P. Ng, Adv. Funct. Mater. 2021, 31, 2103290;
- 9cB.-H. Lee, H. Shin, A. S. Rasouli, H. Choubisa, P. Ou, R. Dorakhan, I. Grigioni, G. Lee, E. Shirzadi, R. K. Miao, J. Wicks, S. Park, H. S. Lee, J. Zhang, Y. Chen, Z. Chen, D. Sinton, T. Hyeon, Y.-E. Sung, E. H. Sargent, Nat. Catal. 2023, 6, 234–243.
- 10
- 10aA. Arul, H. Pak, K. U. Moon, M. Christy, M. Y. Oh, K. S. Nahm, Appl. Catal. B 2018, 220, 488–496;
- 10bQ. Qi, J. Hu, S. Guo, H. Song, S. Wang, Y. Yao, T. Le, W. Li, C. Zhang, L. Zhang, Appl. Catal. B 2021, 299, 120637;
- 10cS. Yang, Y. Yu, M. Dou, Z. Zhang, F. Wang, J. Am. Chem. Soc. 2020, 142, 17524–17530.
- 11K. Chen, K. Liu, P. An, H. Li, Y. Lin, J. Hu, C. Jia, J. Fu, H. Li, H. Liu, Z. Lin, W. Li, J. Li, Y. R. Lu, T. S. Chan, N. Zhang, M. Liu, Nat. Commun. 2020, 11, 4173.
- 12
- 12aY. Wu, C. Chen, X. Yan, X. Sun, Q. Zhu, P. Li, Y. Li, S. Liu, J. Ma, Y. Huang, B. Han, Angew. Chem. Int. Ed. 2021, 60, 20803–20810;
- 12bL. Hu, C. Dai, L. Chen, Y. Zhu, Y. Hao, Q. Zhang, L. Gu, X. Feng, S. Yuan, L. Wang, B. Wang, Angew. Chem. Int. Ed. 2021, 60, 27324–27329.
- 13Y. Wang, D. Xie, G. Wang, Y. Wu, R. Shi, C. Zhou, X. Meng, T. Zhang, Nano Energy 2022, 104, 107938.
- 14Y. Liu, X. Liu, Z. Lv, R. Liu, L. Li, J. Wang, W. Yang, X. Jiang, X. Feng, B. Wang, Angew. Chem. Int. Ed. 2022, 61, e202117617.
- 15Z. Li, Z. Zhuang, F. Lv, H. Zhu, L. Zhou, M. Luo, J. Zhu, Z. Lang, S. Feng, W. Chen, L. Mai, S. Guo, Adv. Mater. 2018, 30, 1803220.
- 16J. Li, X. Gao, Z. Li, J. H. Wang, L. Zhu, C. Yin, Y. Wang, X. B. Li, Z. Liu, J. Zhang, C. H. Tung, L. Z. Wu, Adv. Funct. Mater. 2019, 29, 1808079.
- 17R. Wang, X. Wang, W. Weng, Y. Yao, P. Kidkhunthod, C. Wang, Y. Hou, J. Guo, Angew. Chem. Int. Ed. 2022, 61, e202115503.
- 18X. Shen, L. Zhao, W. Fan, J. Ren, Q. Wang, A. Wang, D. Shang, W. Zhu, Appl. Surf. Sci. 2021, 564, 150463.
- 19S. Yang, Y. Yu, M. Dou, Z. Zhang, L. Dai, F. Wang, Angew. Chem. Int. Ed. 2019, 58, 14724–14730.
- 20H. Jiang, P. Hu, J. Ye, R. Ganguly, Y. Li, Y. Long, D. Fichou, W. Hu, C. Kloc, Angew. Chem. Int. Ed. 2018, 57, 10112–10117.
- 21
- 21aW. Wan, C. A. Triana, J. Lan, J. Li, C. S. Allen, Y. Zhao, M. Iannuzzi, G. R. Patzke, ACS Nano 2020, 14, 13279–13293;
- 21bY. Pan, S. Liu, K. Sun, X. Chen, B. Wang, K. Wu, X. Cao, W. C. Cheong, R. Shen, A. Han, Z. Chen, L. Zheng, J. Luo, Y. Lin, Y. Liu, D. Wang, Q. Peng, Q. Zhang, C. Chen, Y. Li, Angew. Chem. Int. Ed. 2018, 57, 8614–8618.
- 22J. H. Kim, J. S. Lee, Adv. Mater. 2019, 31, 1806938.
- 23
- 23aZ. Wang, J. Huang, L. Wang, Y. Liu, W. Liu, S. Zhao, Z. Q. Liu, Angew. Chem. Int. Ed. 2022, 61, e202114696;
- 23bX. Xu, X. Zhang, Z. Kuang, Z. Xia, A. I. Rykov, S. Yu, J. Wang, S. Wang, G. Sun, Appl. Catal. B 2022, 309, 121290;
- 23cJ. Li, M. T. Sougrati, A. Zitolo, J. M. Ablett, I. C. Oğuz, T. Mineva, I. Matanovic, P. Atanassov, Y. Huang, I. Zenyuk, A. Cicco, K. Kumar, L. Dubau, F. Maillard, G. Dražić, F. Jaouen, Nat. Catal. 2020, 4, 10–19.
- 24K. M. Zhao, S. Liu, Y. Y. Li, X. Wei, G. Ye, W. Zhu, Y. Su, J. Wang, H. Liu, Z. He, Z. Y. Zhou, S. G. Sun, Adv. Energy Mater. 2022, 12, 2103588.
- 25G. Shen, R. Zhang, L. Pan, F. Hou, Y. Zhao, Z. Shen, W. Mi, C. Shi, Q. Wang, X. Zhang, J. J. Zou, Angew. Chem. Int. Ed. 2020, 59, 2313–2317.
- 26J. Suntivich, K. May, H. Gasteiger, J. Goodenough, Y. Shao-Horn, Science 2011, 334, 1383–1385.
- 27Y. Sun, S. Sun, H. Yang, S. Xi, J. Gracia, Z. J. Xu, Adv. Mater. 2020, 32, 2003297.
- 28Z. Chen, S. Jiang, G. Kang, D. Nguyen, G. C. Schatz, R. P. Van Duyne, J. Am. Chem. Soc. 2019, 141, 15684–15692.
- 29L. Jensen, J. Autschbach, G. C. Schatz, J. Chem. Phys. 2005, 122, 224115.