Exceeding 30 % External Quantum Efficiency in Non-doped OLEDs Utilizing Solution Processable TADF Emitters with High Horizontal Dipole Orientation via Anchoring Strategy
Guimin Zhao
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorDan Liu
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorPanpan Wang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorXinping Huang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorHaowen Chen
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorDr. Yuewei Zhang
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Dongdong Zhang
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Wei Jiang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorProf. Yueming Sun
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorProf. Lian Duan
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGuimin Zhao
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorDan Liu
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorPanpan Wang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorXinping Huang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorHaowen Chen
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorDr. Yuewei Zhang
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorDr. Dongdong Zhang
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorCorresponding Author
Prof. Wei Jiang
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorProf. Yueming Sun
Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Engineering, Southeast University, Nanjing, Jiangsu, 211189 China
Search for more papers by this authorProf. Lian Duan
Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084 China
Search for more papers by this authorGraphical Abstract
An anchoring strategy was firstly proposed to generate solution processable TADF emitters from isotropic orientation to horizontal one by attaching bipolar 9,9′-spirobi[fluorene] subunits as anchoring groups onto TADF emitting core via flexible chains. With outstanding characteristics in pristine films, unprecedented EQEmaxs of 30.6 % and 25.6 % were achieved for solution processable non-doped OLEDs and TSF OLEDs, respectively.
Abstract
Strategies to enhance the ratio of the molecular horizontal emitting dipole orientation (Θ∥) for thermally activated delayed fluorescence (TADF) emitters have unlocked the full potential of efficiencies for the evaporated devices, which, however, remain elusive for the solution-processed ones. Here, a strategic molecular design for solution processable TADF emitters featuring high Θ∥s is proposed by attaching flexible chains ended with bipolar 9,9′-spirobi[fluorene] subunits as anchoring groups onto TADF emitting core. It's unveiled that the anchoring groups not only enhance the horizontal orientation via enlarging molecular planarity, but also benefit the high photoluminescence in pristine films. The corresponding non-doped solution processable OLEDs substantiate an unprecedented maximum external quantum efficiency (EQEmax)>30 %. Meanwhile, combining these compounds as TADF sensitizers, and multiple resonance final emitter, solution-processed OLEDs achieve an EQEmax of 25.6 % with a narrow full width at half maximum of 29 nm.
Conflict of interest
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202212861-sup-0001-misc_information.pdf3.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aH. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234;
- 1bK. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253–258;
- 1cM. Y. Wong, E. Zysman-Colman, Adv. Mater. 2017, 29, 1605444;
- 1dD. R. Lee, M. Kim, S. K. Jeon, S.-H. Hwang, C. W. Lee, J. Y. Lee, Adv. Mater. 2015, 27, 5861–5867;
- 1eX. Cai, S.-J. Su, Adv. Funct. Mater. 2018, 28, 1802558;
- 1fA. Salehi, X. Fu, D.-H. Shin, F. So, Adv. Funct. Mater. 2019, 29, 1808803;
- 1gJ. Song, H. Lee, E. G. Jeong, K. C. Choi, S. Yoo, Adv. Mater. 2020, 32, 1907539.
- 2
- 2aF. Tenopala-Carmona, O. S. Lee, E. Crovini, A. M. Neferu, C. Murawski, Y. Olivier, E. Zysman-Colman, M. C. Gather, Adv. Mater. 2021, 33, 2100677;
- 2bT. Marcatoa, C.-J. Shih, Helv. Chim. Acta 2019, 102, e1900048;
- 2cT. D. Schmidt, T. Lampe, S. Daniel, P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl. 2017, 8, 037001.
- 3
- 3aS.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brütting, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 3896–3900;
- 3bK.-H. Kim, J.-J. Kim, Adv. Mater. 2018, 30, 1705600;
- 3cT. D. Schmidt, T. Lampe, D. Sylvinson, M. R., P. I. Djurovich, M. E. Thompson, W. Brütting, Phys. Rev. Appl. 2017, 8, 037001;
- 3dK.-H. Kim, S. Lee, C.-K. Moon, S.-Y. Kim, Y.-S. Park, J.-H. Lee, J.-W. Lee, J. Huh, Y.-M. You, J.-J. Kim, Nat. Commun. 2014, 5, 4769;
- 3eK.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, J.-J. Kim, Adv. Mater. 2014, 26, 3844–3847;
- 3fY. Chen, D. Zhang, Y. Zhang, X. Zeng, T. Huang, Z. Liu, G. Li, L. Duan, Adv. Mater. 2021, 33, 2103293;
- 3gY. Fu, H. Liu, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Sci. Adv. 2021, 7, eabj2504;
- 3hY. Zou, J. Hu, M. Yu, J. Miao, Z. Xie, Y. Qiu, X. Cao, C. Yang, Adv. Mater. 2022, 34, 2201442;
- 3iM. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y. Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chem. Mater. 2017, 29, 8630;
- 3jT.-A. Lin, T. Chatterjee, W.-L. Tsai, W.-K. Lee, M.-J. Wu, M. Jiao, K.-C. Pan, C.-L. Yi, C.-L. Chung, K.-T. Wong, C.-C. Wu, Adv. Mater. 2016, 28, 6976–6983.
- 4
- 4aS. Shao, L. Wang, Aggregate 2020, 1, 45–5;
- 4bP. L. Burn, S.-C. Lo, D. W. Samuel, Adv. Mater. 2007, 19, 1675–1688;
- 4cS.-C. Lo, P. L. Burn, Chem. Rev. 2007, 107, 1097–1116;
- 4dD. Xia, B. Wang, B. Chen, S. Wang, B. Zhang, J. Ding, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. 2014, 53, 1048–1052; Angew. Chem. 2014, 126, 1066–1070;
- 4eY. Zou, S. Gong, G. Xie, C. Yang, Adv. Opt. Mater. 2018, 6, 1800568;
- 4fT. Huang, W. Jiang, L. Duan, J. Mater. Chem. C 2018, 6, 5577–5596;
- 4gK. Albrecht, K. Matsuoka, K. Fujita, K. Yamamoto, Angew. Chem. Int. Ed. 2015, 54, 5677–5682; Angew. Chem. 2015, 127, 5769–5774;
- 4hX. Ban, A. Zhu, T. Zhang, Z. Tong, W. Jiang, Y. Sun, ACS Appl. Mater. Interfaces 2017, 9, 21900–21908;
- 4iX. Ban, W. Jiang, T. Lu, X. Jing, Q. Tang, S. Huang, K. Sun, B. Huang, B. Lin, Y. Sun, J. Mater. Chem. C 2016, 4, 8810–8816;
- 4jD. Liu, M. Zhang, W. Tian, W. Jiang, Y. Sun, Z. Zhao, B. Z. Tang, Aggregate 2022, e164.
- 5
- 5aC. Li, A. K. Harrison, Y. Liu, Z. Zhao, C. Zeng, F. B. Dias, Z. Ren, S. Yan, M. R. Bryce, Angew. Chem. Int. Ed. 2022, 61, e202115140; Angew. Chem. 2022, 134, e202115140;
- 5bD. Sun, E. Duda, X. Fan, R. Saxena, M. Zhang, S. Bagnich, X. Zhang, A. Köhler, E. Zysman-Colman, Adv. Mater. 2022, 34, 2110344.
- 6
- 6aX. Gong, P. Li, Y.-H. Huang, C.-Y. Wang, C.-H. Lu, W.-K. Lee, C. Zhong, Z. Chen, W. Ning, C.-C. Wu, S. Gong, C. Yang, Adv. Funct. Mater. 2020, 30, 1908839;
- 6bH. Lim, H. J. Cheon, S.-J. Woo, S.-K. Kwon, Y.-H. Kim, J.-J. Kim, Adv. Mater. 2020, 32, 2004083;
- 6cS. Y. Byeon, J. Kim, D. R. Lee, S. H. Han, S. R. Forrest, J. Y. Lee, Adv. Opt. Mater. 2018, 6, 1701340;
- 6dX. Fan, K. Wang, Y. Z. Shi, D. Sun, J. Chen, F. Huang, H. Wang, J. Yu, C.-S. Lee, X.-H. Zhang, SmartMat 2022, https://doi.org/10.1002/smm2.1122;
- 6eH. Chen, J. Zeng, R. Huang, J. Wang, J. He, H. Liu, D. Yang, D. Ma, Z. Zhao, B. Z. Tang, Aggregate 2022, https://doi.org/10.1002/agt2.244;
- 6fQ. Feng, Y. Qian, H. Wang, W. Hou, X. Peng, S. Xie, S. Wang, L. Xie, Adv. Opt. Mater. 2022, 10, 2102441;
- 6gJ. Chen, H. Wang, Y. Xiao, K. Wang, M. Zheng, W. Chen, L. Zhou, D. Hu, Y. Huo, C.-S. Lee, X.-H. Zhang, Small 2022, 18, 2201548.
- 7
- 7aC. Zhang, Y. Lu, Z. Liu, Y. Zhang, X. Wang, D. Zhang, L. Duan, Adv. Mater. 2020, 32, 2004040;
- 7bC. C. Wu, T. L. Liu, W. Y. Huang, Y. T. Lin, K. T. Wong, R. T. Chen, Y. M. Chen, Y. Y. Chien, J. Am. Chem. Soc. 2003, 125, 3710–3711.
- 8
- 8aH. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016;
- 8bD. Zhang, L. Duan, C. Li, Y. Li, H. Li, D. Zhang, Y. Qiu, Adv. Mater. 2014, 26, 5050–5055;
- 8cT. Furukawa, H. Nakanotani, M. Inoue, C. Adachi, Sci. Rep. 2015, 5, 8429;
- 8dX. Liu, Z. Chen, C. Zheng, M. Chen, W. Liu, X. Zhang, C. Lee, Adv. Mater. 2015, 27, 2025–2030;
- 8eD. Zhang, X. Song, M. Cai, L. Duan, Adv. Mater. 2018, 30, 1705250;
- 8fX. Song, D. Zhang, Y. Lu, C. Yin, L. Duan, Adv. Mater. 2019, 31, 1901923;
- 8gS. O. Jeon, K. H. Lee, J. S. Kim, S.-G. Ihn, Y. S. Chung, J. W. Kim, H. Lee, S. Kim, H. Choi, J. Y. Lee, Nat. Photonics 2021, 15, 208–215.
- 9
- 9aY. Qu, D. Zhou, F. Kong, Q. Zheng, X. Tang, Y. Zhu, C. Huang, Z. Feng, J. Fan, C. Adachi, L. Liao, Z. Jiang, Angew. Chem. Int. Ed. 2022, 61, e202201886; Angew. Chem. 2022, 134, e202201886;
- 9bD. Zhang, M. Cai, Y. Zhang, D. Zhang, L. Duan, Mater. Horiz. 2016, 3, 145–151.
- 10D. Liu, J. Wei, W. Tian, W. Jiang, Y. Sun, Z. Zhao, B. Z. Tang, Chem. Sci. 2020, 11, 7194–7203.
- 11
- 11aF. Dias, J. Santos, D. Graves, P. Data, R. Nobuyasu, M. Fox, A. Batsanov, T. Palmeira, M. Berberan-Santos, M. Bryce, A. Monkman, Adv. Sci. 2016, 3, 1600080;
- 11bC. Rothe, A. P. Monkman, Phys. Rev. B 2003, 68, 075208;
- 11cM. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680;
- 11dJ. U. Kim, I. S. Park, C.-Y. Chan, M. Tanaka, Y. Tsuchiya, H. Nakanotani, C. Adachi, Nat. Commun. 2020, 11, 1765;
- 11eH. Noda, H. Nakanotani, C. Adachi, Sci. Adv. 2018, 4, aao6910.
- 12J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 18, 1740–1741.
- 13
- 13aC.-Y. Chan, M. Tanaka, H. Nakanotani, C. Adachi, Nat. Commun. 2018, 9, 5036;
- 13bS. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2015, 14, 330–336;
- 13cH. Noda, X.-K. Chen, H. Nakanotani, T. Hosokai, M. Miyajima, N. Notsuka, Y. Kashima, J.-L. Bredas, C. Adachi, Nat. Mater. 2019, 18, 1084–1090.
- 14
- 14aX. Ban, F. Chen, J. Pan, Y. Liu, A. Zhu, W. Jiang, Y. Sun, Chem. Eur. J. 2020, 26, 3090–3102;
- 14bX. Zheng, R. Huang, C. Zhong, G. Xie, W. Ning, M. Huang, F. Ni, F. B. Dias, C. Yang, Adv. Sci. 2020, 7, 1902087;
- 14cD. Liu, W. Tian, Y. Feng, X. Zhang, X. Ban, W. Jiang, Y. Sun, ACS Appl. Mater. Interfaces 2019, 11, 16737–16748;
- 14dJ. Luo, S. Gong, Y. Gu, T. Chen, Y. Li, C. Zhong, G. Xie, C. Yang, J. Mater. Chem. C 2016, 4, 2442–2446;
- 14eK. Matsuoka, K. Albrecht, A. Nakayama, K. Yamamoto, K. Fujita, ACS Appl. Mater. Interfaces 2018, 10, 33343–33352;
- 14fK. Sun, Y. Sun, T. Huang, J. Luo, W. Jiang, Y. Sun, Org. Electron. 2017, 42, 123–130;
- 14gY. Li, G. Xie, S. Gong, K. Wu, C. Yang, Chem. Sci. 2016, 7, 5441–5447;
- 14hX. Wang, S. Wang, J. Lv, S. Shao, L. Wang, X. Jing, F. Wang, Chem. Sci. 2019, 10, 2915–2923;
- 14iD. Sun, R. Saxena, X. Fan, S. Athanasopoulos, E. Duda, M. Zhang, S. Bagnich, X. Zhang, E. Zysman-Colman, A. Köhler, Sci. Adv. 2022, 9, 2201470.
- 15
- 15aS. Madayanad Suresh, D. Hall, D. Beljonne, Y. Olivier, E. Zysman-Colman, Adv. Funct. Mater. 2020, 30, 1908677;
- 15bY. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada, M. Yanai, T. Hatakeyama, Nat. Photonics 2019, 13, 678–682;
- 15cM. Yang, S. Shikita, H. Min, I. S. Park, H. Shibata, N. Amanokura, T. Yasuda, Angew. Chem. Int. Ed. 2021, 60, 23142–23147; Angew. Chem. 2021, 133, 23326–23331;
- 15dM. Yang, I. S. Park, T. Yasuda, J. Am. Chem. Soc. 2020, 142, 19468–19472;
- 15eG. Meng, H. Dai, T. Huang, J. Wei, J. Zhou, X. Li, X. Wang, X. Hong, C. Yin, X. Zeng, Y. Zhang, D. Yang, D. Ma, G. Li, D. Zhang, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202207293; Angew. Chem. 2022, 134, e202207293;
- 15fX. Wang, Y. Zhang, H. Dai, G. Li, M. Liu, G. Meng, X. Zeng, T. Huang, L. Wang, Q. Peng, D. Yang, D. Ma, D. Zhang, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202206916; Angew. Chem. 2022, 134, e202206916;
- 15gX. Lv, J. Miao, M. Liu, Q. Peng, C. Zhong, Y. Hu, X. Cao, H. Wu, Y. Yang, C. Zhou, J. Ma, Y. Zou, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202201588; Angew. Chem. 2022, 134, e202201588;
- 15hY. Yang, N. Li, J. Miao, X. Cao, A. Ying, K. Pan, X. Lv, F. Ni, Z. Huang, S. Gong, C. Yang, Angew. Chem. Int. Ed. 2022, 61, e202202227; Angew. Chem. 2022, 134, e202202227;
- 15iY. Xu, C. Li, Z. Li, Q. Wang, X. Cai, J. Wei, Y. Wang, Angew. Chem. Int. Ed. 2020, 59, 17442–17446; Angew. Chem. 2020, 132, 17595–17599;
- 15jY. Xu, Q. Wang, J. Wei, X. Peng, J. Xue, Z. Wang, S.-J. Su, Y. Wang, Angew. Chem. Int. Ed. 2022, 61, e202204652; Angew. Chem. 2022, 134, e202204652.
- 16Y. Zhang, J. Wei, D. Zhang, C. Yin, G. Li, Z. Liu, X. Jia, J. Qiao, L. Duan, Angew. Chem. Int. Ed. 2022, 61, e202113206; Angew. Chem. 2022, 134, e202113206.
- 17
- 17aP. Wei, D. Zhang, L. Duan, Adv. Funct. Mater. 2020, 30, 1907083;
- 17bY. Zhang, D. Zhang, J. Wei, Z. Liu, Y. Lu, L. Duan, Angew. Chem. Int. Ed. 2019, 58, 16912–16917; Angew. Chem. 2019, 131, 17068–17073.
- 18
- 18aN. Ikeda, S. Oda, R. Matsumoto, M. Yoshioka, D. Fukushima, K. Yoshiura, N. Yasuda, T. Hatakeyama, Adv. Mater. 2020, 32, 2004072;
- 18bS. Oda, B. Kawakami, Y. Yamasaki, R. Matsumoto, M. Yoshioka, D. Fukushima, S. Nakatsuka, T. Hatakeyama, J. Am. Chem. Soc. 2022, 144, 106–112.