Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises
Jianyun Liu
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000 China
Search for more papers by this authorDr. Shuo Duan
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHao Shi
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Tanyuan Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000 China
Search for more papers by this authorXiaoxuan Yang
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
Search for more papers by this authorProf. Yunhui Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Gang Wu
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
Search for more papers by this authorCorresponding Author
Prof. Qing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorJianyun Liu
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000 China
Search for more papers by this authorDr. Shuo Duan
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorHao Shi
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Tanyuan Wang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000 China
Search for more papers by this authorXiaoxuan Yang
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
Search for more papers by this authorProf. Yunhui Huang
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorCorresponding Author
Prof. Gang Wu
Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260 USA
Search for more papers by this authorCorresponding Author
Prof. Qing Li
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
Search for more papers by this authorGraphical Abstract
This Review provides an overview of electrocatalysts designed for the direct splitting of seawater. The mechanism of seawater splitting is introduced before the primary principles for designing catalysts (noble metal, noble metal free, and metal-free) for seawater splitting are analyzed in terms of both the hydrogen and oxygen evolution reactions. The future development of electrocatalysts for clean hydrogen generation is also discussed.
Abstract
Directly splitting seawater to produce hydrogen provides a promising pathway for energy and environmental sustainability. However, current seawater splitting faces many challenges because of the sluggish kinetics, the presence of impurities, membrane contamination, and the competitive chloride oxidation reaction at the anode, which makes it more difficult than freshwater splitting. This Review firstly introduces the basic mechanisms of the anode and cathode reactions during seawater splitting. We critically analyze the primary principles for designing catalysts for seawater splitting in terms of both the hydrogen and oxygen evolution reactions, including with noble metal, noble metal free, and metal-free catalysts. Strategies to design effective catalysts, such as active site population, synergistic effect regulation, and surface engineering, are discussed. Furthermore, promises, perspectives, and challenges in developing seawater splitting technologies for clean hydrogen generation are summarized.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aC. Cullen-Unsworth Leanne, R. Unsworth, Science 2018, 361, 446–448;
- 1bV. Chaturvedi, Nat. Energy 2016, 1, 16075;
- 1cX. Lin, D. Cui, X. Luo, C. Zhang, Q. Han, Y. Wang, L. Han, Energy Environ. Sci. 2020, 13, 3823–3847.
- 2
- 2aM. D. Staples, R. Malina, S. R. H. Barrett, Nat. Energy 2017, 2, 16202;
- 2bP. E. Brockway, A. Owen, L. I. Brand-Correa, L. Hardt, Nat. Energy 2019, 4, 612–621;
- 2cJ. Liang, F. Ma, S. Hwang, X. Wang, J. Sokolowski, Q. Li, G. Wu, D. Su, Joule 2019, 3, 956–991.
- 3
- 3aR. Eisenberg, Science 2009, 324, 44–45;
- 3bH. Dotan, A. Landman, S. W. Sheehan, K. D. Malviya, G. E. Shter, D. A. Grave, Z. Arzi, N. Yehudai, M. Halabi, N. Gal, N. Hadari, C. Cohen, A. Rothschild, G. S. Grader, Nat. Energy 2019, 4, 786–795;
- 3cW. Tong, M. Forster, F. Dionigi, S. Dresp, R. Sadeghi Erami, P. Strasser, A. J. Cowan, P. Farràs, Nat. Energy 2020, 5, 367–377;
- 3dD. Zhu, H. Zhang, J. Miao, F. Hu, L. Wang, Y. Tang, M. Qiao, C. Guo, J. Mater. Chem. A 2022, 10, 3296–3313.
- 4
- 4aY. Li, X. Wei, L. Chen, J. Shi, M. He, Nat. Commun. 2019, 10, 5335;
- 4bX. Xiao, L. Yang, W. Sun, Y. Chen, H. Yu, K. Li, B. Jia, L. Zhang, T. Ma, Small 2022, 18, 2105830.
- 5
- 5aB. Wang, C. Tang, H.-F. Wang, X. Chen, R. Cao, Q. Zhang, Adv. Mater. 2019, 31, 1805658;
- 5bX. Tian, P. Zhao, W. Sheng, Adv. Mater. 2019, 31, 1808066;
- 5cZ. Pu, J. Zhao, I. S. Amiinu, W. Li, M. Wang, D. He, S. Mu, Energy Environ. Sci. 2019, 12, 952–957;
- 5dY. Li, H. Wang, C. Priest, S. Li, P. Xu, G. Wu, Adv. Mater. 2021, 33, 2000381.
- 6Y. Surendranath, M. Dincǎ, D. G. Nocera, J. Am. Chem. Soc. 2009, 131, 2615–2620.
- 7
- 7aE. Fabbri, A. Habereder, K. Waltar, R. Kötz, T. J. Schmidt, Catal. Sci. Technol. 2014, 4, 3800–3821;
- 7bY. Kuang, M. J. Kenney, Y. Meng, W.-H. Hung, Y. Liu, J. E. Huang, R. Prasanna, P. Li, Y. Li, L. Wang, M.-C. Lin, M. D. McGehee, X. Sun, H. Dai, Proc. Natl. Acad. Sci. USA 2019, 116, 6624;
- 7cY. Zhao, B. Jin, Y. Zheng, H. Jin, Y. Jiao, S.-Z. Qiao, Adv. Energy Mater. 2018, 8, 1801926.
- 8M. Elimelech, A. Phillip William, Science 2011, 333, 712–717.
- 9A. Bradshaw, K. Schleicher, IEEE J. Oceanic Eng. 1980, 5, 50–62.
- 10M. Cuartero, G. Crespo, T. Cherubini, N. Pankratova, F. Confalonieri, F. Massa, M.-L. Tercier-Waeber, M. Abdou, J. Schäfer, E. Bakker, Anal. Chem. 2018, 90, 4702–4710.
- 11X. Niu, Q. Tang, B. He, P. Yang, Electrochim. Acta 2016, 208, 180–187.
- 12V. Kumaravel, A. Abdel-Wahab, Energy Fuels 2018, 32, 6423–6437.
- 13https://www.energy.gov/eere/wind/offshore-wind-research-and-development.
- 14J. N. Hausmann, R. Schlögl, P. W. Menezes, M. Driess, Energy Environ. Sci. 2021, 14, 3679–3685.
- 15
- 15aT. Ahmad, D. Zhang, Energy Rep. 2020, 6, 1973–1991;
- 15bhttps://www.iea.org/data-and-statistics.
- 16Hannah Ritchie, Max Roser, P. Rosado, 2020, Published online at OurWorldInData.org. https://ourworldindata.org/energy.
- 17https://ourworldindata.org/grapher/annual-freshwater-withdrawals.
- 18M. A. Khan, T. Al-Attas, S. Roy, M. M. Rahman, N. Ghaffour, V. Thangadurai, S. Larter, J. Hu, P. M. Ajayan, M. G. Kibria, Energy Environ. Sci. 2021, 14, 4831–4839.
- 19P. Farràs, P. Strasser, A. J. Cowan, Joule 2021, 5, 1921–1923.
- 20E. Vartiainen, C. Breyer, D. Moser, E. Román Medina, C. Busto, G. Masson, E. Bosch, A. Jäger-Waldau, Solar RRL 2022, 6, 2100487.
- 21R. d'Amore-Domenech, T. J. Leo, ACS Sustainable Chem. Eng. 2019, 7, 8006–8022.
- 22U. Yermiyahu, A. Tal, A. Ben-Gal, A. Bar-Tal, J. Tarchitzky, O. Lahav, Science 2007, 318, 920–921.
- 23J. Zheng, Appl. Surf. Sci. 2017, 413, 72–82.
- 24J. Zheng, Appl. Surf. Sci. 2017, 413, 360–365.
- 25H. Li, Q. Tang, B. He, P. Yang, J. Mater. Chem. A 2016, 4, 6513–6520.
- 26F. Dionigi, T. Reier, Z. Pawolek, M. Gliech, P. Strasser, ChemSusChem 2016, 9, 962–972.
- 27Y. Zhao, B. Jin, A. Vasileff, Y. Jiao, S.-Z. Qiao, J. Mater. Chem. A 2019, 7, 8117–8121.
- 28M. Patel, W.-H. Park, A. Ray, J. Kim, J.-H. Lee, Sol. Energy Mater. Sol. Cells 2017, 171, 267–274.
- 29S. T. Senthilkumar, S. O. Park, J. Kim, S. M. Hwang, S. K. Kwak, Y. Kim, J. Mater. Chem. A 2017, 5, 14174–14181.
- 30
- 30aY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, Chem. Soc. Rev. 2015, 44, 2060–2086;
- 30bV. Vij, S. Sultan, A. M. Harzandi, A. Meena, J. N. Tiwari, W.-G. Lee, T. Yoon, K. S. Kim, ACS Catal. 2017, 7, 7196–7225;
- 30cH. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Adv. Mater. 2020, 32, 1806326;
- 30dT. Wang, G. Nam, Y. Jin, X. Wang, P. Ren, M. G. Kim, J. Liang, X. Wen, H. Jang, J. Han, Y. Huang, Q. Li, J. Cho, Adv. Mater. 2018, 30, 1800757;
- 30eC. Wang, T. Wang, J. Liu, Y. Zhou, D. Yu, J.-K. cheng, F. Han, Q. Li, J. Chen, Y. Huang, Energy Environ. Sci. 2018, 11, 2467–2475;
- 30fH. Xie, S. Chen, J. Liang, T. Wang, Z. Hou, H.-L. Wang, G. Chai, Q. Li, Adv. Funct. Mater. 2021, 31, 2100883.
- 31
- 31aJ. Zhang, Q. Zhang, X. Feng, Adv. Mater. 2019, 31, 1808167;
- 31bC. Hu, L. Zhang, J. Gong, Energy Environ. Sci. 2019, 12, 2620–2645.
- 32
- 32aZ.-P. Wu, X. F. Lu, S.-Q. Zang, X. W. Lou, Adv. Funct. Mater. 2020, 30, 1910274;
- 32bM. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Schäfer, Chem. Soc. Rev. 2022, 51, 4583–4762;
- 32cJ. Wang, Y. Gao, H. Kong, J. Kim, S. Choi, F. Ciucci, Y. Hao, S. Yang, Z. Shao, J. Lim, Chem. Soc. Rev. 2020, 49, 9154–9196.
- 33Z. Oener Sebastian, J. Foster Marc, W. Boettcher Shannon, Science 2020, 369, 1099–1103.
- 34I. C. Man, H.-Y. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. Nørskov, J. Rossmeisl, ChemCatChem 2011, 3, 1159–1165.
- 35R. L. Pindar, C. Batchelor-McAuley, M. Yang, R. G. Compton, J. Phys. Chem. C 2021, 125, 27949–27958.
- 36
- 36aS. Khatun, H. Hirani, P. Roy, J. Mater. Chem. A 2021, 9, 74–86;
- 36bZ. Zhou, Z. Pei, L. Wei, S. Zhao, X. Jian, Y. Chen, Energy Environ. Sci. 2020, 13, 3185–3206.
- 37
- 37aW. Li, F. Li, H. Yang, X. Wu, P. Zhang, Y. Shan, L. Sun, Nat. Commun. 2019, 10, 5074;
- 37bL. Yu, L. Wu, B. McElhenny, S. Song, D. Luo, F. Zhang, Y. Yu, S. Chen, Z. Ren, Energy Environ. Sci. 2020, 13, 3439–3446.
- 38
- 38aK. Xu, H. Cheng, L. Liu, H. Lv, X. Wu, C. Wu, Y. Xie, Nano Lett. 2017, 17, 578–583;
- 38bN. Wang, Z. Cao, X. Zheng, B. Zhang, S. M. Kozlov, P. Chen, C. Zou, X. Kong, Y. Wen, M. Liu, Y. Zhou, C. T. Dinh, L. Zheng, H. Peng, Y. Zhao, L. Cavallo, X. Zhang, E. H. Sargent, Adv. Mater. 2020, 32, 1906806.
- 39
- 39aP. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, X. Sun, Small 2019, 15, 1805103;
- 39bY. Dong, S. Komarneni, Small Methods 2021, 5, 2000719;
- 39cK. S. Joya, Y. F. Joya, H. J. M. de Groot, Adv. Energy Mater. 2014, 4, 1301929.
- 40
- 40aY. Jung, E. Hong, Y. Yoon, M. Kwon, J.-W. Kang, Ozone Sci. Eng. 2014, 36, 515–525;
- 40bY. Jung, Y. Yoon, M. Kwon, S. Roh, T.-M. Hwang, J.-W. Kang, Desalin. Water Treat. 2016, 57, 10136–10145.
- 41S. Dresp, F. Dionigi, M. Klingenhof, P. Strasser, ACS Energy Lett. 2019, 4, 933–942.
- 42M.-I. Jamesh, M. Harb, J. Energy Chem. 2021, 56, 299–342.
- 43H. A. Hansen, I. C. Man, F. Studt, F. Abild-Pedersen, T. Bligaard, J. Rossmeisl, Phys. Chem. Chem. Phys. 2010, 12, 283–290.
- 44
- 44aM. Auinger, I. Katsounaros, J. C. Meier, S. O. Klemm, P. U. Biedermann, A. A. Topalov, M. Rohwerder, K. J. J. Mayrhofer, Phys. Chem. Chem. Phys. 2011, 13, 16384–16394;
- 44bI. Katsounaros, J. C. Meier, S. O. Klemm, A. A. Topalov, P. U. Biedermann, M. Auinger, K. J. J. Mayrhofer, Electrochem. Commun. 2011, 13, 634–637.
- 45N. Dubouis, A. Grimaud, Chem. Sci. 2019, 10, 9165–9181.
- 46
- 46aY. Yan, B. Xia, Z. Xu, X. Wang, ACS Catal. 2014, 4, 1693–1705;
- 46bY. Guo, T. Park, J. W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 2019, 31, 1807134.
- 47
- 47aS. Anantharaj, V. Aravindan, Adv. Energy Mater. 2020, 10, 1902666;
- 47bJ. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Adv. Mater. 2017, 29, 1605838.
- 48
- 48aX. Lu, J. Pan, E. Lovell, T. H. Tan, Y. H. Ng, R. Amal, Energy Environ. Sci. 2018, 11, 1898–1910;
- 48bD. W. Kirk, A. E. Ledas, Int. J. Hydrogen Energy 1982, 7, 925–932.
- 49
- 49aR. Stamenkovic Vojislav, B. Fowler, S. Mun Bongjin, G. Wang, N. Ross Philip, A. Lucas Christopher, M. Marković Nenad, Science 2007, 315, 493–497;
- 49bR. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 2012, 11, 550–557.
- 50Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. B. Chorkendorff, J. K. Nørskov, T. F. Jaramillo, Science 2017, 355, eaad4998.
- 51X.-L. Wang, L.-Z. Dong, M. Qiao, Y.-J. Tang, J. Liu, Y. Li, S.-L. Li, J.-X. Su, Y.-Q. Lan, Angew. Chem. Int. Ed. 2018, 57, 9660–9664; Angew. Chem. 2018, 130, 9808–9812.
- 52G. Zhang, Y.-S. Feng, W.-T. Lu, D. He, C.-Y. Wang, Y.-K. Li, X.-Y. Wang, F.-F. Cao, ACS Catal. 2018, 8, 5431–5441.
- 53
- 53aX. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem. Int. Ed. 2017, 56, 15025–15029; Angew. Chem. 2017, 129, 15221–15225;
- 53bA. Goyal, M. T. M. Koper, Angew. Chem. Int. Ed. 2021, 60, 13452–13462; Angew. Chem. 2021, 133, 13564–13574.
- 54I. T. McCrum, X. Chen, K. A. Schwarz, M. J. Janik, M. T. M. Koper, J. Phys. Chem. C 2018, 122, 16756–16764.
- 55
- 55aT. Reier, D. Teschner, T. Lunkenbein, A. Bergmann, S. Selve, R. Kraehnert, R. Schlögl, P. Strasser, J. Electrochem. Soc. 2014, 161, F876–F882;
- 55bW. Jin, H. Wu, W. Cai, B. Jia, M. Batmunkh, Z. Wu, T. Ma, Chem. Eng. J. 2021, 426, 130762.
- 56
- 56aS. Hao, Y. Wang, G. Zheng, L. Qiu, N. Xu, Y. He, L. Lei, X. Zhang, Appl. Catal. B 2020, 266, 118643;
- 56bJ. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.-C. Wang, S. Guo, Adv. Mater. 2017, 29, 1703798;
- 56cJ. Zhou, Y. Dou, A. Zhou, L. Shu, Y. Chen, J.-R. Li, ACS Energy Lett. 2018, 3, 1655–1661;
- 56dG.-L. Tian, Q. Zhang, B. Zhang, Y.-G. Jin, J.-Q. Huang, D. S. Su, F. Wei, Adv. Funct. Mater. 2014, 24, 5956–5961.
- 57J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao, Z. Tian, G. Chen, L. Chen, Adv. Mater. 2018, 30, 1801351.
- 58V. Petrykin, K. Macounova, O. A. Shlyakhtin, P. Krtil, Angew. Chem. Int. Ed. 2010, 49, 4813–4815; .
- 59K. Izumiya, E. Akiyama, H. Habazaki, N. Kumagai, A. Kawashima, K. Hashimoto, Electrochim. Acta 1998, 43, 3303–3312.
- 60I. Jiménez-Morales, S. Cavaliere, D. Jones, J. Rozière, Phys. Chem. Chem. Phys. 2018, 20, 8765–8772.
- 61J. Liu, M. Yu, X. Wang, J. Wu, C. Wang, L. Zheng, D. Yang, H. Liu, Y. Yao, F. Lu, W. Wang, J. Mater. Chem. A 2017, 5, 20922–20931.
- 62D. Zhou, P. Li, W. Xu, S. Jawaid, J. Mohammed-Ibrahim, W. Liu, Y. Kuang, X. Sun, ChemNanoMat 2020, 6, 336–355.
- 63
- 63aD. Chinnadurai, M. Nallal, H.-J. Kim, O. L. Li, K. H. Park, K. Prabakar, ChemCatChem 2020, 12, 2348–2355;
- 63bH. Osgood, S. V. Devaguptapu, H. Xu, J. Cho, G. Wu, Nano Today 2016, 11, 601–625.
- 64Z. Lei, T. Wang, B. Zhao, W. Cai, Y. Liu, S. Jiao, Q. Li, R. Cao, M. Liu, Adv. Energy Mater. 2020, 10, 2000478.
- 65T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 2012, 134, 1519–1527.
- 66H. Kakizaki, H. Ooka, T. Hayashi, A. Yamaguchi, N. Bonnet-Mercier, K. Hashimoto, R. Nakamura, Adv. Funct. Mater. 2018, 28, 1706319.
- 67K. Fujimura, T. Matsui, K. Izumiya, N. Kumagai, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, Mater. Sci. Eng. A 1999, 267, 254–259.
- 68N. Jiang, H.-m. Meng, Surf. Coat. Technol. 2012, 206, 4362–4367.
- 69
- 69aK. Fujimura, K. Izumiya, A. Kawashima, E. Akiyama, H. Habazaki, N. Kumagai, K. Hashimoto, J. Appl. Electrochem. 1999, 29, 769–775;
- 69bA. A. El-Moneim, N. Kumagai, K. Asami, K. Hashimoto, Mater. Trans. 2005, 46, 309–316;
- 69cT. Matsui, H. Habazaki, A. Kawashima, K. Asami, N. Kumagai, K. Hashimoto, J. Appl. Electrochem. 2002, 32, 993–1000;
- 69dA. A. El-Moneim, Int. J. Hydrogen Energy 2011, 36, 13398–13406;
- 69eR. M. Abou Shahba, E. M. Attia, N. M. Deiab, Egypt. J. Pet. 2013, 22, 35–42.
10.1016/j.ejpe.2012.09.001 Google Scholar
- 70
- 70aJ. Suntivich, J. May Kevin, A. Gasteiger Hubert, B. Goodenough John, Y. Shao-Horn, Science 2011, 334, 1383–1385;
- 70bD. Shao, P. Li, D. Wang, C. Zhao, C. Zhao, J. Solid State Electrochem. 2019, 23, 2051–2060.
- 71S. Li, X. Hao, A. Abudula, G. Guan, J. Mater. Chem. A 2019, 7, 18674–18707.
- 72T. Ma, W. Xu, B. Li, X. Chen, J. Zhao, S. Wan, K. Jiang, S. Zhang, Z. Wang, Z. Tian, Z. Lu, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 22740–22744; Angew. Chem. 2021, 133, 22922–22926.
- 73
- 73aM. Görlin, P. Chernev, J. Ferreira de Araújo, T. Reier, S. Dresp, B. Paul, R. Krähnert, H. Dau, P. Strasser, J. Am. Chem. Soc. 2016, 138, 5603–5614;
- 73bX. Bo, Y. Li, X. Chen, C. Zhao, Chem. Mater. 2020, 32, 4303–4311;
- 73cA. U. Vijayakumar, N. Aloni, V. T. Veettil, G. Rahamim, S. S. Hardisty, M. Zysler, S. Tirosh, D. Zitoun, ACS Appl. Energy Mater. 2022, 5, 4017–4024.
- 74M. M. Jakšić, Electrochim. Acta 1984, 29, 1539–1550.
- 75H. Xiao, H. Shin, W. A. Goddard, Proc. Natl. Acad. Sci. USA 2018, 115, 5872.
- 76H. J. Song, H. Yoon, B. Ju, D.-Y. Lee, D.-W. Kim, ACS Catal. 2020, 10, 702–709.
- 77
- 77aM. K. Bates, Q. Jia, H. Doan, W. Liang, S. Mukerjee, ACS Catal. 2016, 6, 155–161;
- 77bJ. Landon, E. Demeter, N. İnoğlu, C. Keturakis, I. E. Wachs, R. Vasić, A. I. Frenkel, J. R. Kitchin, ACS Catal. 2012, 2, 1793–1801;
- 77cJ. Zheng, Electrochim. Acta 2017, 247, 381–391;
- 77dT. P. Keane, D. G. Nocera, ACS Omega 2019, 4, 12860–12864.
- 78F. Cheng, X. Feng, X. Chen, W. Lin, J. Rong, W. Yang, Electrochim. Acta 2017, 251, 336–343.
- 79W.-H. Huang, C.-Y. Lin, Faraday Discuss. 2019, 215, 205–215.
- 80L. Yu, Q. Zhu, S. Song, B. McElhenny, D. Wang, C. Wu, Z. Qin, J. Bao, Y. Yu, S. Chen, Z. Ren, Nat. Commun. 2019, 10, 5106.
- 81J. Liu, X. Liu, H. Shi, J. Luo, L. Wang, J. Liang, S. Li, L.-M. Yang, T. Wang, Y. Huang, Q. Li, Appl. Catal. B 2022, 302, 120862.
- 82
- 82aZ. Guo, G. Ren, C. Jiang, X. Lu, Y. Zhu, L. Jiang, L. Dai, Sci. Rep. 2015, 5, 17064;
- 82bJ. Benson, Q. Xu, P. Wang, Y. Shen, L. Sun, T. Wang, M. Li, P. Papakonstantinou, ACS Appl. Mater. Interfaces 2014, 6, 19726–19736;
- 82cT. Y. Ma, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2014, 53, 7281–7285; Angew. Chem. 2014, 126, 7409–7413.
- 83
- 83aY. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2013, 52, 3110–3116; Angew. Chem. 2013, 125, 3192–3198;
- 83bR. Liu, D. Wu, X. Feng, K. Müllen, Angew. Chem. Int. Ed. 2010, 49, 2565–2569; Angew. Chem. 2010, 122, 2619–2623.
- 84J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 2015, 10, 444–452.
- 85H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao, H. M. Chen, Sci. Adv. 2016, 2, e1501122.
- 86
- 86aY. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2014, 136, 4394–4403;
- 86bY. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu, J. Qu, Phys. Chem. Chem. Phys. 2013, 15, 12220–12226;
- 86cJ. Liang, Y. Jiao, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2012, 51, 11496–11500; Angew. Chem. 2012, 124, 11664–11668.
- 87S. Chen, J. Duan, Y. Zheng, X. Chen, X. W. Du, M. Jaroniec, S.-Z. Qiao, Energy Storage Mater. 2015, 1, 17–24.
- 88M.-R. Liu, Q.-L. Hong, Q.-H. Li, Y. Du, H.-X. Zhang, S. Chen, T. Zhou, J. Zhang, Adv. Funct. Mater. 2018, 28, 1801136.
- 89
- 89aI. S. Filimonenkov, C. Bouillet, G. Kéranguéven, P. A. Simonov, G. A. Tsirlina, E. R. Savinova, Electrochim. Acta 2019, 321, 134657;
- 89bS. Sharma, B. G. Pollet, J. Power Sources 2012, 208, 96–119;
- 89cS. Gupta, S. Zhao, X. X. Wang, S. Hwang, S. Karakalos, S. V. Devaguptapu, S. Mukherjee, D. Su, H. Xu, G. Wu, ACS Catal. 2017, 7, 8386–8393.
- 90M. Patel, W. H. Park, A. Ray, J. Kim, J. H. Lee, Data in Brief 2017, 14, 68–72.
- 91L. Wu, L. Yu, F. Zhang, B. McElhenny, D. Luo, A. Karim, S. Chen, Z. Ren, Adv. Funct. Mater. 2021, 31, 2006484.
- 92L. Wu, L. Yu, Q. Zhu, B. McElhenny, F. Zhang, C. Wu, X. Xing, J. Bao, S. Chen, Z. Ren, Nano Energy 2021, 83, 105838.
- 93P. Li, S. Wang, I. A. Samo, X. Zhang, Z. Wang, C. Wang, Y. Li, Y. Du, Y. Zhong, C. Cheng, W. Xu, X. Liu, Y. Kuang, Z. Lu, X. Sun, Res. China 2020, 2020, 2872141.
- 94Y. Zheng, Y. Jiao, A. Vasileff, S.-Z. Qiao, Angew. Chem. Int. Ed. 2018, 57, 7568–7579; Angew. Chem. 2018, 130, 7690–7702.
- 95S. Anantharaj, S. Noda, Small 2020, 16, 1905779.
- 96S. Sultan, J. N. Tiwari, A. N. Singh, S. Zhumagali, M. Ha, C. W. Myung, P. Thangavel, K. S. Kim, Adv. Energy Mater. 2019, 9, 1900624.
- 97
- 97aR. Parsons, Trans. Faraday Soc. 1958, 54, 1053–1063;
- 97bJ. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
- 98E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K. Vesborg, J. Halme, O. Hansen, P. D. Lund, I. Chorkendorff, Energy Environ. Sci. 2015, 8, 2991–2999.
- 99J. Zheng, Y. Zhao, H. Xi, C. Li, RSC Adv. 2018, 8, 9423–9429.
- 100C.-H. Chen, D. Wu, Z. Li, R. Zhang, C.-G. Kuai, X.-R. Zhao, C.-K. Dong, S.-Z. Qiao, H. Liu, X.-W. Du, Adv. Energy Mater. 2019, 9, 1803913.
- 101S. Ye, W. Xiong, P. Liao, L. Zheng, X. Ren, C. He, Q. Zhang, J. Liu, J. Mater. Chem. A 2020, 8, 11246–11254.
- 102
- 102aS. A. Grigoriev, P. Millet, V. N. Fateev, J. Power Sources 2008, 177, 281–285;
- 102bA. Renjith, A. Roy, V. Lakshminarayanan, J. Colloid Interface Sci. 2014, 426, 270–279.
- 103D. Wu, D. Chen, J. Zhu, S. Mu, Small 2021, 17, 2102777.
- 104M. Sarno, E. Ponticorvo, D. Scarpa, Electrochem. Commun. 2020, 111, 106647.
- 105Y. Liu, X. Hu, B. Huang, Z. Xie, ACS Sustainable Chem. Eng. 2019, 7, 18835–18843.
- 106
- 106aX.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740–1748;
- 106bX. Li, Y. He, S. Cheng, B. Li, Y. Zeng, Z. Xie, Q. Meng, L. Ma, K. Kisslinger, X. Tong, S. Hwang, S. Yao, C. Li, Z. Qiao, C. Shan, Y. Zhu, J. Xie, G. Wang, G. Wu, D. Su, Adv. Mater. 2021, 33, 2106371;
- 106cY. He, G. Wu, Acc. Mater. Res. 2022, 3, 224–236;
- 106dX. Yang, M. Wang, M. J. Zachman, H. Zhou, Y. He, S. Liu, H.-Y. Zang, Z. Feng, G. Wu, Small Sci. 2021, 1, 2100046;
- 106eZ. Qiao, C. Wang, C. Li, Y. Zeng, S. Hwang, B. Li, S. Karakalos, J. Park, A. J. Kropf, E. C. Wegener, Q. Gong, H. Xu, G. Wang, D. J. Myers, J. Xie, J. S. Spendelow, G. Wu, Energy Environ. Sci. 2021, 14, 4948–4960.
- 107L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Angew. Chem. Int. Ed. 2017, 56, 13694–13698; Angew. Chem. 2017, 129, 13882–13886.
- 108L. Xiu, W. Pei, S. Zhou, Z. Wang, P. Yang, J. Zhao, J. Qiu, Adv. Funct. Mater. 2020, 30, 1910028.
- 109Q. Zhang, J. Guan, Adv. Funct. Mater. 2020, 30, 2000768.
- 110J. Mohammed-Ibrahim, X. Sun, J. Energy Chem. 2019, 34, 111–160.
- 111
- 111aI. W. P. Chen, C.-H. Hsiao, J.-Y. Huang, Y.-H. Peng, C.-Y. Chang, ACS Appl. Mater. Interfaces 2019, 11, 14159–14165;
- 111bT. Liu, H. Liu, X. Wu, Y. Niu, B. Feng, W. Li, W. Hu, C. M. Li, Electrochim. Acta 2018, 281, 710–716;
- 111cJ. Liu, Z. Wang, J. Li, L. Cao, Z. Lu, D. Zhu, Small 2020, 16, 1905738.
- 112H. Jin, X. Liu, A. Vasileff, Y. Jiao, Y. Zhao, Y. Zheng, S.-Z. Qiao, ACS Nano 2018, 12, 12761–12769.
- 113
- 113aY. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, J. Am. Chem. Soc. 2015, 137, 110–113;
- 113bB. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang, P. Schmuki, Angew. Chem. Int. Ed. 2016, 55, 12252–12256; Angew. Chem. 2016, 128, 12440–12444;
- 113cY. Huang, J. Ge, J. Hu, J. Zhang, J. Hao, Y. Wei, Adv. Energy Mater. 2018, 8, 1701601.
- 114Y. Zhao, Q. Tang, B. He, P. Yang, RSC Adv. 2016, 6, 93267–93274.
- 115Y.-Y. Ma, C.-X. Wu, X.-J. Feng, H.-Q. Tan, L.-K. Yan, Y. Liu, Z.-H. Kang, E.-B. Wang, Y.-G. Li, Energy Environ. Sci. 2017, 10, 788–798.
- 116C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook, J. Wang, Nano Energy 2018, 48, 73–80.
- 117
- 117aM. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, Nano Res. 2016, 9, 28–46;
- 117bY. Li, X. Bao, D. Chen, Z. Wang, N. Dewangan, M. Li, Z. Xu, J. Wang, S. Kawi, Q. Zhong, ChemCatChem 2019, 11, 5913–5928;
- 117cA. Li, Y. Sun, T. Yao, H. Han, Chem. Eur. J. 2018, 24, 18334–18355;
- 117dD. Zhu, L. Wang, M. Qiao, J. Liu, Chem. Commun. 2020, 56, 7159–7162.
- 118Y. Zhang, P. Li, X. Yang, W. Fa, S. Ge, J. Alloys Compd. 2018, 732, 248–256.
- 119
- 119aB. Liu, Y.-F. Zhao, H.-Q. Peng, Z.-Y. Zhang, C.-K. Sit, M.-F. Yuen, T.-R. Zhang, C.-S. Lee, W.-J. Zhang, Adv. Mater. 2017, 29, 1606521;
- 119bT. Liu, L. Xie, J. Yang, R. Kong, G. Du, A. M. Asiri, X. Sun, L. Chen, ChemElectroChem 2017, 4, 1840–1845.
- 120N. Jiang, H.-M. Meng, L.-J. Song, H.-Y. Yu, Int. J. Hydrogen Energy 2010, 35, 8056–8062.
- 121Q. Lv, J. Han, X. Tan, W. Wang, L. Cao, B. Dong, ACS Appl. Energy Mater. 2019, 2, 3910–3917.
- 122
- 122aY. Fan, Y. Sun, X. Zhang, J. Guo, Chem. Eng. J. 2021, 426, 131922;
- 122bQ. Chen, B. Wei, Y. Wei, P. Zhai, W. Liu, X. Gu, Z. Yang, J. Zuo, R. Zhang, Y. Gong, Appl. Catal. B 2022, 301, 120754.
- 123C.-T. Dinh, A. Jain, F. P. G. de Arquer, P. De Luna, J. Li, N. Wang, X. Zheng, J. Cai, B. Z. Gregory, O. Voznyy, B. Zhang, M. Liu, D. Sinton, E. J. Crumlin, E. H. Sargent, Nat. Energy 2019, 4, 107–114.
- 124F. Lu Xue, L. Yu, W. Lou Xiong, Sci. Adv. 5, eaav6009.
- 125L. Liang, H. Jin, H. Zhou, B. Liu, C. Hu, D. Chen, Z. Wang, Z. Hu, Y. Zhao, H.-W. Li, D. He, S. Mu, Nano Energy 2021, 88, 106221.
- 126Y. Huang, L. Hu, R. Liu, Y. Hu, T. Xiong, W. Qiu, M. S. Balogun, A. Pan, Y. Tong, Appl. Catal. B 2019, 251, 181–194.
- 127F. Golgovici, A. Pumnea, A. Petica, A. C. Manea, O. Brincoveanu, M. Enachescu, L. Anicai, Chem. Pap. 2018, 72, 1889–1903.
- 128Y. Yao, Y. Zhu, C. Pan, C. Wang, S. Hu, W. Xiao, X. Chi, Y. Fang, J. Yang, H. Deng, S. Xiao, J. Li, Z. Luo, Y. Guo, J. Am. Chem. Soc. 2021, 143, 8720–8730.
- 129L. Yu, L. Wu, S. Song, B. McElhenny, F. Zhang, S. Chen, Z. Ren, ACS Energy Lett. 2020, 5, 2681–2689.
- 130X. Wu, S. Zhou, Z. Wang, J. Liu, W. Pei, P. Yang, J. Zhao, J. Qiu, Adv. Energy Mater. 2019, 9, 1901333.
- 131H. Jin, X. Wang, C. Tang, A. Vasileff, L. Li, A. Slattery, S.-Z. Qiao, Adv. Mater. 2021, 33, 2007508.
- 132W. Zang, T. Sun, T. Yang, S. Xi, M. Waqar, Z. Kou, Z. Lyu, Y. P. Feng, J. Wang, S. J. Pennycook, Adv. Mater. 2021, 33, 2003846.
- 133V. Petrykin, K. Macounova, O. A. Shlyakhtin, P. Krtil, Angew. Chem. Int. Ed. 2010, 49, 4813–4815, DOI:10.1002/anie.200907128.