Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites
Yan Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorJunwei Li
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Junheng Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorYan Kong
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Bin Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Zhongjian Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Lecheng Lei
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Guoliang Chai
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liming Dai
Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University–Quzhou, Quzhou, 324000 China
Search for more papers by this authorYan Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorJunwei Li
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Junheng Huang
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorDr. Junxiang Chen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorYan Kong
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Bin Yang
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Zhongjian Li
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorProf. Dr. Lecheng Lei
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorDr. Guoliang Chai
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenhai Wen
CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Liming Dai
Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
Search for more papers by this authorCorresponding Author
Prof. Dr. Yang Hou
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Institute of Zhejiang University–Quzhou, Quzhou, 324000 China
Search for more papers by this authorGraphical Abstract
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) plays a vital role for next-generation electrochemical energy conversion technologies. However, the NRR kinetics is still limited by the sluggish hydrogenation process on noble-metal-free electrocatalyst. Herein, we report the rational design and synthesis of a hybrid catalyst with atomic iron sites anchored on a N,O-doped porous carbon (FeSA-NO-C) matrix of an inverse opal structure, leading to a remarkably high NH3 yield rate of 31.9 μg
h−1 mg−1cat. and Faradaic efficiency of 11.8 % at −0.4 V for NRR electrocatalysis, outperformed almost all previously reported atomically dispersed metal-nitrogen-carbon catalysts. Theoretical calculations revealed that the observed high NRR catalytic activity for the FeSA-NO-C catalyst stemmed mainly from the optimized charge-transfer between the adjacent O and Fe atoms homogenously distributed on the porous carbon support, which could not only significantly facilitate the transportation of N2 and ions but also effectively decrease the binding energy between the isolated Fe atom and *N2 intermediate and the thermodynamic Gibbs free energy of the rate-determining step (*N2 → *NNH).
Conflict of interest
The authors declare no conflict of interest.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202100526-sup-0001-misc_information.pdf4.3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aV. Smil, Nature 1999, 400, 415–415;
- 1bR. Schlögl, Angew. Chem. Int. Ed. 2003, 42, 2004–2008; Angew. Chem. 2003, 115, 2050–2055;
- 1cR. F. Service, Science 2018, 361, 120–123;
- 1dN. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G. Zheng, Nat. Commun. 2019, 10, 2877;
- 1eS. Z. Andersen, V. Colic, S. Yang, J. A. Schwalbe, A. C. Nielander, J. M. McEnaney, K. Enemark-Rasmussen, J. G. Baker, A. R. Singh, B. A. Rohr, M. J. Statt, S. J. Blair, S. Mezzavilla, J. Kibsgaard, P. C. K. Vesborg, M. Cargnello, S. F. Bent, T. F. Jaramillo, I. E. L. Stephens, J. K. Norskov, I. Chorkendorff, Nature 2019, 570, 504–508.
- 2
- 2aC. Tang, S. Z. Qiao, Chem. Soc. Rev. 2019, 48, 3166–3180;
- 2bW. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48, 5658–5716;
- 2cJ. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, 6391;
- 2dG. Zhang, H. Xu, Y. Li, C. Xiang, Q. Ji, H. Liu, J. Qu, J. Li, Adv. Sci. 2019, 6, 1901627;
- 2eE. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jónsson, J. K. Nørskov, Phys. Chem. Chem. Phys. 2012, 14, 1235–1245;
- 2fY. C. Hao, Y. Guo, L. W. Chen, M. Shu, X. Y. Wang, T. A. Bu, W. Y. Gao, N. Zhang, X. Su, X. Feng, J. W. Zhou, B. Wang, C. W. Hu, A. X. Yin, R. Si, Y. W. Zhang, C. H. Yan, Nat. Catal. 2019, 2, 448–456;
- 2gM. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Commun. 2019, 10, 341;
- 2hY. Li, Y. Kong, Y. Hou, B. Yang, Z. Li, L. Lei, Z. Wen, ACS Sustainable Chem. Eng. 2019, 7, 8853–8859;
- 2iL. Zhang, G. F. Chen, L. X. Ding, H. Wang, Chem 2019, 25, 12464–12485;
- 2jH. Wang, J. Si, T. Zhang, Y. Li, B. Yang, Z. Li, J. Chen, Z. Wen, C. Yuan, L. Lei, Y. Hou, Appl. Catal. B 2020, 270, 2020–118892;
- 2kL. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang, X. Sun, Adv. Mater. 2018, 30, 1800191.
- 3
- 3aH. Wang, Y. Li, C. Li, K. Deng, Z. Wang, Y. Xu, X. Li, H. Xue, L. Wang, J. Mater. Chem. A 2019, 7, 801–805;
- 3bC. Yang, B. Huang, S. Bai, Y. Feng, Q. Shao, X. Huang, Adv. Mater. 2020, 32, 202001267;
- 3cM. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan, Q. Jiang, Adv. Mater. 2017, 29, 1606550;
- 3dY. Yao, H. Wang, X. Z. Yuan, H. Li, M. Shao, ACS Energy Lett. 2019, 4, 1336–1341.
- 4
- 4aY. Wang, X. Cui, J. Zhao, G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, W. Zheng, ACS Catal. 2019, 9, 336–344;
- 4bX. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S. Z. Qiao, J. Am. Chem. Soc. 2019, 141, 9664–9672;
- 4cX. Zhu, S. Mou, Q. Peng, Q. Liu, Y. Luo, G. Chen, S. Gao, X. Sun, J. Mater. Chem. A 2020, 8, 1545–1556.
- 5Z. Gao, H. Huang, S. Xu, L. Li, G. Yan, M. Zhao, W. Yang, X. Zhao, Mol. Catal. 2020, 493, 111091.
- 6H. Jiang, J. Gu, X. Zheng, M. Liu, X. Qiu, L. Wang, W. Li, Z. Chen, X. Ji, J. Li, Energy Environ. Sci. 2019, 12, 322–333.
- 7
- 7aA. I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan, H. Liu, M. A. Salam, B. Y. Xia, Adv. Mater. 2020, 32, 2002170;
- 7bY. Li, J. Huang, X. Hu, L. Bi, P. Cai, J. Jia, G. Chai, S. Wei, L. Dai, Z. Wen, Adv. Funct. Mater. 2018, 28, 1803330;
- 7cO. H. Kim, Y. H. Cho, S. H. Kang, H. Y. Park, M. Kim, J. W. Lim, D. Y. Chung, M. J. Lee, H. Choe, Y. E. Sung, Nat. Commun. 2013, 4, 2473;
- 7dT. Wang, X. Sang, W. Zheng, B. Yang, S. Yao, C. Lei, Z. Li, Q. He, J. Lu, L. Lei, L. Dai, Y. Hou, Adv. Mater. 2020, 32, 2002430;
- 7eX. Wang, Q. Zhao, B. Yang, Z. Li, Z. Bo, K. H. Lam, N. M. Adli, L. Lei, Z. Wen, G. Wu, Y. Hou, J. Mater. Chem. A 2019, 7, 25191–25202.
- 8
- 8aR. Jiang, L. Li, T. Sheng, G. Hu, Y. Chen, L. Wang, J. Am. Chem. Soc. 2018, 140, 11594–11598;
- 8bC. Lei, H. Chen, J. Cao, J. Yang, M. Qiu, Y. Xia, C. Yuan, B. Yang, Z. Li, X. Zhang, L. Lei, J. Abbott, Y. Zhong, X. Xia, G. Wu, Q. He, Y. Hou, Adv. Energy Mater. 2018, 8, 1801912;
- 8cY. He, X. Zhuang, C. Lei, L. Lei, Y. Hou, Y. Mai, X. Feng, Nano Today 2019, 24, 103–119;
- 8dY. Hou, M. Qiu, T. Zhang, J. Ma, S. Liu, X. Zhuang, C. Yuan, X. Feng, Adv. Mater. 2017, 29, 1604480.
- 9L. Zhao, Y. Zhang, L. B. Huang, X. Z. Liu, Q. H. Zhang, C. He, Z. Y. Wu, L. J. Zhang, J. Wu, W. Yang, L. Gu, J. S. Hu, L. J. Wan, Nat. Commun. 2019, 10, 1278.
- 10T. Wang, Q. Zhao, Y. Fu, C. Lei, B. Yang, Z. Li, L. Lei, G. Wu, Y. Hou, Small Methods 2019, 3, 190021.
- 11
- 11aH. Fei, J. Dong, Y. Feng, C. S. Allen, C. Wan, B. Volosskiy, M. Li, Z. Zhao, Y. Wang, H. Sun, P. An, W. Chen, Z. Guo, C. Lee, D. Chen, I. Shakir, M. Liu, T. Hu, Y. Li, A. I. Kirkland, X. Duan, Y. Huang, Nat. Catal. 2018, 1, 63–72;
- 11bN. Mohd Adli, W. Shan, S. Hwang, W. Samarakoon, S. Karakalos, Y. Li, D. A. Cullen, D. Su, Z. Feng, G. Wang, G. Wu, Angew. Chem. Int. Ed. 2021, 60, 1022–1032.
- 12X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Nat. Catal. 2019, 1, 63–72.
- 13
- 13aX. Y. Cui, C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 1800369;
- 13bY. Kong, Y. Li, B. Yang, Z. Li, Y. Yao, J. Lu, L. Lei, Z. Wen, M. Shao, Y. Hou, J. Mater. Chem. A 2019, 7, 26272–26278;
- 13cS. Mukherjee, D. A. Cullen, S. Karakalos, K. Liu, H. Zhang, S. Zhao, H. Xu, K. L. More, G. Wang, G. Wu, Nano Energy 2018, 48, 217–226.
- 14
- 14aJ. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun. 2018, 9, 1795;
- 14bX. Yang, S. Sun, L. Meng, K. Li, S. Mukherjee, X. Chen, J. Lv, S. Liang, H. Y. Zang, L. K. Yan, G. Wu, Appl. Catal. B 2021, 285, 119794.
- 15C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. Dong, D. Chen, J. M. Tour, ACS Nano 2017, 11, 6930–6941.
- 16M. Wang, S. Liu, T. Qian, J. Liu, J. Zhou, H. Ji, J. Xiong, J. Zhong, C. Yan, Nat. Commun. 2019, 10, 341.