High-Preservation Single-Cell Operation through a Photo-responsive Hydrogel-Nanopipette System
Dr. Zi-Yuan Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorYing-Ya Liu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorYuan-Jie Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorWenhui Wang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYanyan Song
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Dr. Junji Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDr. Zi-Yuan Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorYing-Ya Liu
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
These authors contributed equally to this work.
Search for more papers by this authorYuan-Jie Li
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorWenhui Wang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYanyan Song
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Dr. Junji Zhang
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. He Tian
Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorGraphical Abstract
The fabrication of photo-responsive hydrogel-nanopipette system ensures both precision single-cell operation and high cell preservation. Upon light-controlled, non-invasive operation, a high cell viability over 90 % as well as precise quantification of injection are obtained. Hence, a single-cell precise-dosing is achieved with a minimum lethal dose of 163–217 fg cell−1.
Abstract
Single-cell and in situ cell-based operation with nanopipette approach offers a possibility to elucidate the intracellular processes and may aid the improvement of therapy efficiency and precision. We present here a photo-responsive hydrogel-nanopipette hybrid system that can achieve single-cell operation with high spatial/temporal resolution and negligible cell damage. This strategy overcomes long-time obstacles in nanopipette single-cell studies as high electric potential (ca. 1000 mV) or organic solvent is always used during operations, which would inevitably impose disturbance and damage to targeted cells. The light-triggered system promotes a potential-free, non-invasive single-cell injection, resulting in a well-retained cell viability (90 % survival rate). Moreover, the photo-driven injection enables a precisely dose-controllable single-cell drug delivery. Significantly reduced lethal doses of doxorubicin (163–217 fg cell−1) are demonstrated in corresponding cell lines.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie202013011-sup-0001-misc_information.pdf1.9 MB | Supplementary |
anie202013011-sup-0001-Video_1.mov9.3 MB | Supplementary |
anie202013011-sup-0001-Video_2.mov13.3 MB | Supplementary |
anie202013011-sup-0001-Video_3.mov1.7 MB | Supplementary |
anie202013011-sup-0001-Video_4.mov1.7 MB | Supplementary |
anie202013011-sup-0001-Video_5.mov10.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1G. Bulbul, G. Chaves, J. Olivier, R. E. Ozel, N. Pourmand, Cell 2018, 7, 55.
- 2Y. L. Ying, Y. X. Hu, R. Gao, R. J. Yu, Z. Gu, L. P. Lee, Y. T. Long, J. Am. Chem. Soc. 2018, 140, 5385–5392.
- 3B. P. Nadappuram, P. Cadinu, A. Barik, A. J. Ainscough, M. J. Devine, M. Kang, J. Gonzalez-Garcia, J. T. Kittler, K. R. Willison, R. Vilar, P. Actis, B. Wojciak-Stothard, S. Oh, A. P. Lvanov, J. B. Edel, Nat. Nanotechnol. 2019, 14, 80–88.
- 4P. Actis, M. M. Maalouf, H. J. Kim, A. Lohith, B. Vilozny, R. A. Seger, N. Pourmand, ACS Nano 2014, 8, 546–553.
- 5K. Zhang, X. Han, Y. Li, S. Y. Li, Y. Zu, Z. Wang, L. Qin, J. Am. Chem. Soc. 2014, 136, 10858–10861.
- 6P. Actis, S. Tokar, J. Clausmeyer, B. Babakinejad, S. Mikhaleva, R. Cornut, Y. Takahashi, A. L. Córdoba, P. Novak, A. I. Shevchuck, J. A. Dougan, S. G. Kazarian, P. V. Gorelkin, A. S. Erofeev, I. V. Yaminsky, P. R. Unwin, W. Schuhmann, D. Klenerman, D. A. Rusakov, E. V. Sviderskaya, Y. E. Korchev, ACS Nano 2014, 8, 875–884.
- 7J. Y. Zhou, G. Z. Ma, Y. Chen, D. J. Fang, D. C. Jiang, H. Y. Chen, Anal. Chem. 2015, 87, 8138–8143.
- 8S. I. Stoeva, J. S. Lee, J. E. Smith, S. T. Rosen, C. A. Mirkin, J. Am. Chem. Soc. 2006, 128, 8378–8379.
- 9M. C. Park, M. C. Hur, H. S. Cho, S. H. Park, K. Y. Suh, Lab Chip 2011, 11, 79–86.
- 10X. Mu, W. F. Zheng, J. S. Sun, W. Zhang, X. Y. Jiang, Small 2013, 9, 9–21.
- 11J. Wang, R. Trouillon, J. Dunevall, A. G. Ewing, Anal. Chem. 2014, 86, 4515–4520.
- 12R. J. Kimmerling, G. L. Szeto, J. W. Li, A. S. Genshaft, S. W. Kazer, K. R. Payer, J. R. Borrajo, P. C. Blainey, D. J. Irvine, A. K. Shalek, S. R. Manalis, Nat. Commun. 2016, 7, 10220.
- 13J. Gao, R. Riahi, M. L. Y. Sin, S. F. Zhang, P. K. Wong, Analyst 2012, 137, 5215–5221.
- 14A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, S. R. Quake, Nat. Biotechnol. 1999, 17, 1109–1111.
- 15L. Liu, T. H. Cheung, G. W. Charville, T. A. Rando, Nat. Protoc. 2015, 10, 1612–1624.
- 16K. Norregaard, R. Metzier, C. M. Ritter, K. Berg-Sørensen, L. B. Oddershede, Chem. Rev. 2017, 117, 4342–4375.
- 17H. Zhang, K. K. Liu, J. R. Soc. Interface 2008, 5, 671–690.
- 18A. Ashkin, K. Schütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, Nature 1990, 348, 346–348.
- 19O. Guillaume-Gentil, E. Potthoff, D. Ossola, C. M. Franz, T. Zambelli, J. A. Vorholt, Trends Biotechnol. 2014, 32, 381–388.
- 20X. Li, Y. L. Tao, D. H. Lee, H. K. Wickramasinghe, A. P. Lee, Lab Chip 2017, 17, 1635–1644.
- 21R. J. Yu, Y. L. Ying, R. Gao, Y. T. Long, Angew. Chem. Int. Ed. 2019, 58, 3706–3714; Angew. Chem. 2019, 131, 3744–3752.
- 22E. N. Tóth, A. Lohith, M. Mondal, J. Guo, A. Fukamizu, N. Pourmand, J. Biol. Chem. 2018, 293, 4940–4951.
- 23J. D. Piper, R. W. Clarke, Y. E. Korchev, L. Ying, D. A. Klenerman, J. Am. Chem. Soc. 2006, 128, 16462–16463.
- 24K. Jayant, J. J. Hirtz, I. J. Plante, D. M. Tsai, W. D. A. M. De Boer, A. Semonche, D. S. Peterka, J. S. Owen, O. Sahin, K. L. Shepard, R. Yuste, Nat. Nanotechnol. 2017, 12, 335–342.
- 25S. D. Zhang, M. Z. Li, B. Su, Y. H. Shao, Annu. Rev. Anal. Chem. 2018, 11, 265–286.
- 26R. A. Seger, P. Actis, C. Penfold, M. Maalouf, B. Vilozny, N. Pourmand, Nanoscale 2012, 4, 5843–5846.
- 27S. Hennig, S. Van De Linde, M. Lummer, M. Simonis, T. Huser, M. Sauer, Nano Lett. 2015, 15, 1374–1381.
- 28J. Lv, R. C. Qian, Y. X. Hu, S. C. Liu, Y. Cao, Y. J. Zheng, Y. T. Long, Chem. Commun. 2016, 52, 13909–13911.
- 29R. C. Qian, J. Lv, Y. T. Long, Anal. Chem. 2018, 90, 13744–13750.
- 30F. O. Laforge, J. Carpino, S. A. Rotenberg, M. V. Mirkin, Proc. Natl. Acad. Sci. USA 2007, 104, 11895–11900.
- 31Y. L. Ying, Y. J. Li, J. Mei, R. Gao, Y. X. Hu, Y. T. Long, H. Tian, Nat. Commun. 2018, 9, 3657.
- 32M. Simonis, W. Hübne, A. Wilking, T. Huser, S. Hennig, Sci. Rep. 2017, 7, 41277.
- 33M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174–12277.
- 34D. J. van Dijken, J. M. Beierle, M. C. A. Strart, W. Szymański, W. R. Browne, B. L. Feringa, Angew. Chem. Int. Ed. 2014, 53, 5073–7507; Angew. Chem. 2014, 126, 5173–5177.
- 35M. Herder, B. M. Schmidt, L. Grubert, M. Pätzel, J. Schwarz, S. Hecht, J. Am. Chem. Soc. 2015, 137, 2738–2747.
- 36G. F. Liu, L. Y. Zhu, W. Ji, C. L. Feng, Z. X. Wei, Angew. Chem. Int. Ed. 2016, 55, 2411–2415; Angew. Chem. 2016, 128, 2457–2461.
- 37Z. Y. Li, G. Davidson-Rozenfeld, M. Vázquez-González, M. Fadeev, J. J. Zhang, H. Tian, I. Willner, J. Am. Chem. Soc. 2018, 140, 17691–17701.
- 38L. Meazza, J. A. Foster, K. Fucke, P. Metrangolo, G. Resnati, J. W. Steed, Nat. Chem. 2013, 5, 42–47.
- 39A. S. Weingarten, R. V. Kazantsev, L. C. Palmer, M. McClendon, A. R. Koltonow, A. P. S. Samuel, D. J. Kiebala, M. R. Wasielewski, S. I. Stupp, Nat. Chem. 2014, 6, 964–970.
- 40G. F. Liu, W. Ji, W. L. Wang, C. L. Feng, ACS Appl. Mater. Interfaces 2015, 7, 301–307.
- 41Y. Feng, Q. Zhang, W. Tan, D. Zhang, Y. Tu, H. Ågren, H. Tian, Chem. Phys. Lett. 2008, 455, 256–260.
- 42A. Fernandez, E. J. Thompson, J. W. Pollard, T. Kitamura, M. Vendrell, Angew. Chem. Int. Ed. 2019, 58, 16894–16898; Angew. Chem. 2019, 131, 17050–17054.
- 43N. Linde, M. Casanova-Acebes, M. S. Sosa, A. Mortha, A. Rahman, E. Farias, K. Harper, E. Tardio, I. R. Torres, J. Jones, J. Condeelis, M. Merad, J. A. Aguirre-Ghiso, Nat. Commun. 2018, 9, 21.
- 44A. A. Barkal, K. Weiskopf, K. S. Kao, S. R. Gordon, B. Rosental, Y. Y. Yiu, B. M. George, M. Markovic, N. G. Ring, J. M. Tsai, K. M. McKenna, P. Y. Ho, R. Z. Cheng, J. Y. Chen, L. J. Barkal, A. M. Ring, I. L. Weissman, R. L. Maute, Nat. Immunol. 2018, 19, 76–84.
- 45F. Krombach, S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr, M. Dörger, Environ. Health Perspect. 1997, 105, 1261–1263.
- 46H. Sadeghi-Aliabadi, M. Minaiyan, A. Dabestan, Res. Pharm. Sci. 2010, 5, 127–133.
- 47H. J. Yu, Z. Cui, P. Yu, C. Guo, B. Feng, T. Jiang, S. Wang, Q. Yin, D. Zhong, X. Yang, Z. Zhang, Y. Li, Adv. Funct. Mater. 2015, 25, 2489–2500.
- 48K. Hüll, J. Morstein, D. Trauner, Chem. Rev. 2018, 118, 10710–10747.
- 49K. Deisseroth, Nat. Neurosci. 2015, 18, 1213–1225.
- 50N. Ankenbruck, T. Courtney, Y. Naro, A. Deiter, Angew. Chem. Int. Ed. 2018, 57, 2768–2798; Angew. Chem. 2018, 130, 2816–2848.
- 51H. L. Li, J. C. Vaughan, Chem. Rev. 2018, 118, 9412–9454.
Citing Literature
March 1, 2021
Pages 5157-5161