Stimuli-Responsive Biomolecule-Based Hydrogels and Their Applications
Dr. Margarita Vázquez-González
Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorDr. Margarita Vázquez-González
Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorCorresponding Author
Prof. Itamar Willner
Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
Search for more papers by this authorGraphical Abstract
Having control: Stimuli-responsive hydrogels with triggered stiffness properties are attracting growing interest as smart materials for different applications. The Review discusses the design of biomolecule-based stimuli-responsive hydrogels and their applications as self-healing, shape-memory, and controlled drug-release matrices, as well as mechanical actuators. Surface-confined switchable hydrogels and their uses are also introduced.
Abstract
This Review presents polysaccharides, oligosaccharides, nucleic acids, peptides, and proteins as functional stimuli-responsive polymer scaffolds that yield hydrogels with controlled stiffness. Different physical or chemical triggers can be used to structurally reconfigure the crosslinking units and control the stiffness of the hydrogels. The integration of stimuli-responsive supramolecular complexes and stimuli-responsive biomolecular units as crosslinkers leads to hybrid hydrogels undergoing reversible triggered transitions across different stiffness states. Different applications of stimuli-responsive biomolecule-based hydrogels are discussed. The assembly of stimuli-responsive biomolecule-based hydrogel films on surfaces and their applications are discussed. The coating of drug-loaded nanoparticles with stimuli-responsive hydrogels for controlled drug release is also presented.
Conflict of interest
The authors declare no conflict of interest.
References
- 1S. B. Mishra, A. K. Mishra, Polymeric Hydrogels as Smart Biomaterials, Springer, Berlin, 2015, pp. 1–10.
- 2
- 2aD. A. Gyles, L. D. Castro, J. O. C. Silva, R. M. Ribeiro-Costa, Eur. Polym. J. 2017, 88, 373–392;
- 2bJ. P. Luís, J. del Valle, A. Díaz, Gels 2017, 3, 27;
- 2cJ. J. Duan, L. N. Zhang, Chin. J. Polym. Sci. 2017, 35, 1165–1180;
- 2dP. M. Kharkar, K. L. Kiick, A. M. Kloxin, Chem. Soc. Rev. 2013, 42, 7335–7372;
- 2eY. Li, J. Rodrigues, H. Tomás, Chem. Soc. Rev. 2012, 41, 2193–2221;
- 2fB. Balakrishnan, R. Banerjee, Chem. Rev. 2011, 111, 4453–4474;
- 2gS. Van Vlierberghe, P. Dubruel, E. Schacht, Biomacromolecules 2011, 12, 1387–1408;
- 2hN. A. Peppas, J. Z. Hilt, A. Khademhosseini, R. Langer, Adv. Mater. 2006, 18, 1345–1360.
- 3
- 3aS. Graham, P. F. Marina, A. Blencowe, Carbohydr. Polym. 2019, 207, 143–159;
- 3bA. Kirschning, N. Dibbert, G. Dräger, Chem. Eur. J. 2018, 24, 1231–1240;
- 3cI. Kwiecień, M. Kwiecień, Gels 2018, 4, 47;
- 3dT. Zhang, R. Yang, S. Yang, J. Guan, D. Zhang, Y. Ma, H. Liu, Drug Delivery 2018, 25, 278–292;
- 3eD. A. Sánchez-Téllez, L. Téllez-Jurado, L. M. Rodríguez-Lorenzo, Polymers 2017, 9, 1–32;
- 3fT. Thambi, V. H. G. Phan, D. S. Lee, Macromol. Rapid Commun. 2016, 37, 1881–1896;
- 3gB. P. Purcell et al., Nat. Mater. 2014, 13, 653–661;
- 3hP. Matricardi, C. Di Meo, T. Coviello, W. E. Hennink, F. Alhaique, Adv. Drug Delivery Rev. 2013, 65, 1172–1187;
- 3iJ. A. Burdick, G. D. Prestwich, Adv. Mater. 2011, 23, H41–H56;
- 3jS. Ladet, L. David, A. Domard, Nature 2008, 452, 76–79.
- 4
- 4aR. Merindol, G. Delechiave, L. Heinen, L. H. Catalani, A. Walther, Nat. Commun. 2019, 10, 528;
- 4bJ. Fern, R. Schulman, Nat. Commun. 2018, 9, 3766;
- 4cY. Wang, Y. Zhu, Y. Hu, G. Zeng, Y. Zhang, C. Zhang, C. Feng, Small 2018, 14, 1703305;
- 4dJ. S. Kahn, Y. Hu, I. Willner, Acc. Chem. Res. 2017, 50, 680–690;
- 4eJ. Li, L. Mo, C.-H. Lu, T. Fu, H.-H. Yang, W. Tan, Chem. Soc. Rev. 2016, 45, 1410–1431;
- 4fW. Guo, C. H. Lu, R. Orbach, F. Wang, X. J. Qi, A. Cecconello, D. Seliktar, I. Willner, Adv. Mater. 2015, 27, 73–78;
- 4gZ. G. Wang, B. Ding, Adv. Mater. 2013, 25, 3905–3914;
- 4hY. Hu et al., Macromol. Rapid Commun. 2013, 34, 1271–1283;
- 4iY. Xing, E. Cheng, Y. Yang, P. Chen, T. Zhang, Y. Sun, Z. Yang, D. Liu, Adv. Mater. 2011, 23, 1117–1121.
- 5
- 5aJ. Brindha, K. Chanda, M. M. Balamurali, Mater. Sci. Eng. C 2019, 95, 312–327;
- 5bH. R. Culver, N. A. Peppas, Chem. Mater. 2017, 29, 5753–5761;
- 5cS. Kapoor, S. C. Kundu, Acta Biomater. 2016, 31, 17–32;
- 5dJ. Whittaker, R. Balu, N. R. Choudhury, N. K. Dutta, Polym. Int. 2014, 63, 1545–1557;
- 5eR. Silva, B. Fabry, A. R. Boccaccini, Biomaterials 2014, 35, 6727–6738;
- 5fD. M. Ryan, B. L. Nilsson, Polym. Chem. 2012, 3, 18–33;
- 5gA. M. Jonker, D. W. P. M. Löwik, J. C. M. Van Hest, Chem. Mater. 2012, 24, 759–773;
- 5hJ. Kopeček, J. Yang, Angew. Chem. Int. Ed. 2012, 51, 7396–7417; Angew. Chem. 2012, 124, 7512–7535;
- 5iA. MaHam, Z. Tang, H. Wu, J. Wang, Y. Lin, Small 2009, 5, 1706–1721;
- 5jM. J. Zohuriaan-Mehr, A. Pourjavadi, H. Salimi, M. Kurdtabar, Polym. Adv. Technol. 2009, 20, 655–671.
- 6
- 6aC. Chou, S. Syu, J. H. Chang, P. Aimar, Y. Chang, Langmuir 2019, 35, 1909–1918;
- 6bX. Liu, Q. Zhang, Y. Qiao, L. Duan, G. Gao, Polym. Chem. 2018, 9, 4535–4542;
- 6cY. Yang, X. Wang, F. Yang, H. Shen, D. Wu, Adv. Mater. 2016, 28, 7178–7184;
- 6dK. Hu, J. Sun, Z. Guo, P. Wang, Q. Chen, M. Ma, N. Gu, Adv. Mater. 2015, 27, 2507–2514;
- 6eX. Jia, J. Wang, K. Wang, J. Zhu, Langmuir 2015, 31, 8732–8737;
- 6fR. Takahashi, Z. L. Wu, M. Arifuzzaman, T. Nonoyama, T. Nakajima, T. Kurokawa, J. P. Gong, Nat. Commun. 2014, 5, 4490;
- 6gP. Shestakova, R. Willem, E. Vassileva, Chem. Eur. J. 2011, 17, 14867–14877.
- 7
- 7aS. W. Wu, X. Liu, A. L. Miller, Y. S. Cheng, M. L. Yeh, L. Lu, Carbohydr. Polym. 2018, 192, 308–316;
- 7bH. Yu, Y. Wang, H. Yang, K. Peng, X. Zhang, J. Mater. Chem. B 2017, 5, 4121–4127;
- 7cQ. Xu, C. He, Z. Zhang, K. Ren, X. Chen, ACS Appl. Mater. Interfaces 2016, 8, 30692–30702;
- 7dJ. Lee, M. N. Silberstein, A. A. Abdeen, S. Y. Kim, K. A. Kilian, Mater. Horiz. 2016, 3, 447–451;
- 7eP. Casuso, I. Odriozola, A. Pérez-San Vicente, I. Loinaz, G. Cabañero, H. J. Grande, D. Dupin, Biomacromolecules 2015, 16, 3552–3561;
- 7fY. N. Zhang, R. K. Avery, Q. Vallmajo-Martin, A. Assmann, A. Vegh, A. Memic, B. D. Olsen, N. Annabi, A. Khademhosseini, Adv. Funct. Mater. 2015, 25, 4814–4826;
- 7gN. Kong, Q. Peng, H. Li, Adv. Funct. Mater. 2014, 24, 7310–7317;
- 7hS. Y. Choh, D. Cross, C. Wang, Biomacromolecules 2011, 12, 1126–1136;
- 7iC. Ren, Z. Song, W. Zheng, X. Chen, L. Wang, D. Kong, Z. Yang, Chem. Commun. 2011, 47, 1619–1621;
- 7jX. Z. Shu, Y. Liu, Y. Luo, M. C. Roberts, G. D. Prestwich, Biomacromolecules 2002, 3, 1304–1311.
- 8
- 8aY. Zhang, X. Le, W. Lu, Y. Jian, J. Zhang, T. Chen, Macromol. Mater. Eng. 2018, 303, 1800144;
- 8bA. J. R. Amaral, M. Emamzadeh, G. Pasparakis, Polym. Chem. 2018, 9, 525–537;
- 8cW. J. Yang, P. Zhou, L. Liang, Y. Cao, J. Qiao, X. Li, Z. Teng, L. Wang, ACS Appl. Mater. Interfaces 2018, 10, 18560–18573;
- 8dA. Pettignano, S. Grijalvo, M. Häring, R. Eritja, N. Tanchoux, F. Quignard, D. Díaz Díaz, Chem. Commun. 2017, 53, 3350–3353;
- 8eB. Cai, Y. Luo, Q. Guo, X. Zhang, Z. Wu, Carbohydr. Res. 2017, 445, 32–39;
- 8fR. Guo, Q. Su, J. Zhang, A. Dong, C. Lin, J. Zhang, Biomacromolecules 2017, 18, 1356–1364;
- 8gH. Meng, J. Zheng, X. F. Wen, Z. Q. Cai, J. W. Zhang, T. Chen, Macromol. Rapid Commun. 2015, 36, 533–537;
- 8hL. He, D. Szopinski, Y. Wu, G. A. Luinstra, P. Theato, ACS Macro Lett. 2015, 4, 673–678;
- 8iM. Vatankhah-Varnoosfaderani, S. Hashmi, A. Ghavaminejad, F. J. Stadler, Polym. Chem. 2014, 5, 512–523;
- 8jL. He, D. E. Fullenkamp, J. G. Rivera, P. B. Messersmith, Chem. Commun. 2011, 47, 7497–7499.
- 9
- 9aR. Tamate, K. Hashimoto, T. Horii, M. Hirasawa, X. Li, M. Shibayama, M. Watanabe, Adv. Mater. 2018, 30, 1802792;
- 9bY. Zhang, Y. Li, W. Liu, Adv. Funct. Mater. 2015, 25, 471–480;
- 9cL. Li, B. Yan, J. Yang, L. Chen, H. Zeng, Adv. Mater. 2015, 27, 1294–1299;
- 9dX. Hu, M. Vatankhah-Varnoosfaderani, J. Zhou, Q. Li, S. S. Sheiko, Adv. Mater. 2015, 27, 6899–6905;
- 9eM. Guo, L. M. Pitet, H. M. Wyss, M. Vos, P. Y. W. Dankers, E. W. Meijer, J. Am. Chem. Soc. 2014, 136, 6969–6977;
- 9fJ. Cui, A. Del Campo, Chem. Commun. 2012, 48, 9302–9304;
- 9gO. Kotova, R. Daly, C. M. G. Dos Santos, M. Boese, P. E. Kruger, J. J. Boland, T. Gunnlaugsson, Angew. Chem. Int. Ed. 2012, 51, 7208–7212; Angew. Chem. 2012, 124, 7320–7324;
- 9hL. Tang, W. Liu, G. Liu, Adv. Mater. 2010, 22, 2652–2656;
- 9iS. Manna, A. Saha, A. K. Nandi, Chem. Commun. 2006, 4285–4287;
- 9jY. Zhang, H. Gu, Z. Yang, B. Xu, J. Am. Chem. Soc. 2003, 125, 13680–13681.
- 10
- 10aL. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Macromol. Rapid Commun. 2019, 40, 1800837;
- 10bK. Zhang, W. Yuan, K. Wei, B. Yang, X. Chen, Z. Li, Z. Zhang, L. Bian, Small 2019, 15, 1900242;
- 10cL. Shi et al., Adv. Funct. Mater. 2017, 27, 1700591;
- 10dM. Häring, D. D. Díaz, Chem. Commun. 2016, 52, 13068–13081;
- 10eY. Shi, M. Wang, C. Ma, Y. Wang, X. Li, G. Yu, Nano Lett. 2015, 15, 6276–6281;
- 10fS. C. Grindy, R. Learsch, D. Mozhdehi, J. Cheng, D. G. Barrett, Z. Guan, P. B. Messersmith, N. Holten-Andersen, Nat. Mater. 2015, 14, 1210–1216;
- 10gH. Liang, Z. Zhang, Q. Yuan, J. Liu, Chem. Commun. 2015, 51, 15196–15199;
- 10hY. Li, C. Zhou, L. Xu, F. Yao, L. Cen, G. D. Fu, RSC Adv. 2015, 5, 18242–18251.
- 11
- 11aJ. Jin, L. Cai, Y. G. Jia, S. Liu, Y. Chen, L. Ren, J. Mater. Chem. B 2019, 7, 1637–1651;
- 11bT. Xiao, L. Xu, L. Zhou, X. Q. Sun, C. Lin, L. Wang, J. Mater. Chem. B 2019, 7, 1526–1540;
- 11cT. Xiao, L. Wang, Tetrahedron Lett. 2018, 59, 1172–1182;
- 11dB. V. K. J. Schmidt, C. Barner-Kowollik, Angew. Chem. Int. Ed. 2017, 56, 8350–8369; Angew. Chem. 2017, 129, 8468–8488;
- 11eC. Li, M. J. Rowland, Y. Shao, T. Cao, C. Chen, H. Jia, X. Zhou, Z. Yang, O. A. Scherman, D. Liu, Adv. Mater. 2015, 27, 3298–3304;
- 11fT. Kakuta, Y. Takashima, M. Nakahata, M. Otsubo, H. Yamaguchi, A. Harada, Adv. Mater. 2013, 25, 2849–2853;
- 11gX. Liao, G. Chen, X. Liu, W. Chen, F. Chen, M. Jiang, Angew. Chem. Int. Ed. 2010, 49, 4409–4413; Angew. Chem. 2010, 122, 4511–4515.
- 12S. Datta, N. Dey, S. Bhattacharya, Chem. Commun. 2017, 53, 2371–2374.
- 13
- 13aR. A. Sheldon, S. van Pelt, Chem. Soc. Rev. 2013, 42, 6223–6235;
- 13bS. P. Bird, L. A. Baker, Analyst 2011, 136, 3410–3418;
- 13cM. A. C. Stuart et al., Nat. Mater. 2010, 9, 101–113.
- 14
- 14aS. Keller, S. P. Teora, G. X. Hu, M. Nijemeisland, D. A. Wilson, Angew. Chem. Int. Ed. 2018, 57, 9814–9817; Angew. Chem. 2018, 130, 9962–9965;
- 14bT. Peschke, P. Bitterwolf, S. Gallus, Y. Hu, C. Oelschlaeger, N. Willenbacher, K. S. Rabe, C. M. Niemeyer, Angew. Chem. Int. Ed. 2018, 57, 17028–17032; Angew. Chem. 2018, 130, 17274–17278;
- 14cH. Liang, S. Jiang, Q. Yuan, G. Li, F. Wang, Z. Zhang, J. Liu, Nanoscale 2016, 8, 6071–6078;
- 14dT. Yoshii, S. Onogi, H. Shigemitsu, I. Hamachi, J. Am. Chem. Soc. 2015, 137, 3360–3365;
- 14eS. Lilienthal, Z. Shpilt, F. Wang, R. Orbach, I. Willner, ACS Appl. Mater. Interfaces 2015, 7, 8923–8931;
- 14fM. Ikeda, T. Tanida, T. Yoshii, K. Kurotani, S. Onogi, K. Urayama, I. Hamachi, Nat. Chem. 2014, 6, 511–518;
- 14gJ. Yuan, D. Wen, N. Gaponik, A. Eychmüller, Angew. Chem. Int. Ed. 2013, 52, 976–979; Angew. Chem. 2013, 125, 1010–1013;
- 14hY. Gao, F. Zhao, Q. Wang, Y. Zhang, B. Xu, Chem. Soc. Rev. 2010, 39, 3425–3433.
- 15
- 15aM. E. Cooke et al., Adv. Mater. 2018, 30, 1705013;
- 15bD. Seliktar, Science 2012, 336, 1124–1129.
- 16
- 16aL. B. Jiang, D. H. Su, S. L. Ding, Q. C. Zhang, Z. F. Li, F. C. Chen, W. Ding, S. T. Zhang, J. Dong, Adv. Funct. Mater. 2019, 29, 1901314;
- 16bM. Mehrali, A. Thakur, C. P. Pennisi, S. Talebian, A. Arpanaei, M. Nikkhah, A. Dolatshahi-Pirouz, Adv. Mater. 2017, 29, 1603612;
- 16cB. Xu, P. Zheng, F. Gao, W. Wang, H. Zhang, X. Zhang, X. Feng, W. Liu, Adv. Funct. Mater. 2017, 27, 1604327;
- 16dT. E. Brown, K. S. Anseth, Chem. Soc. Rev. 2017, 46, 6532–6552;
- 16eJ. F. Xing, M. L. Zheng, X. M. Duan, Chem. Soc. Rev. 2015, 44, 5031–5039;
- 16f“Hydrogels for Tissue Engineering”: J. Teßmar, F. Brandl, A. Göpferich, in Fundamentals of Tissue Engineering and Regenerative Medicine, Springer, Berlin, Heidelberg, 2009, pp. 495–517.
10.1007/978-3-540-77755-7_37 Google Scholar
- 17
- 17aC. Zhao et al., ACS Appl. Mater. Interfaces 2019, 11, 8749–8762;
- 17bL. Kuang, X. Ma, Y. Ma, Y. Yao, M. Tariq, Y. Yuan, C. Liu, ACS Appl. Mater. Interfaces 2019, 11, 17234–17246;
- 17cA. De Mori, M. P. Fernández, G. Blunn, G. Tozzi, M. Roldo, Polymers 2018, 10, 285;
- 17dP. J. Kondiah, Y. E. Choonara, P. P. D. Kondiah, T. Marimuthu, P. Kumar, L. C. Du Toit, V. Pillay, Molecules 2016, 21, 1580;
- 17eG. Tozzi, A. De Mori, A. Oliveira, M. Roldo, Materials 2016, 9, 267;
- 17fS. Pina, J. M. Oliveira, R. L. Reis, Adv. Mater. 2015, 27, 1143–1169;
- 17gJ. R. Xavier, T. Thakur, P. Desai, M. K. Jaiswal, N. Sears, E. Cosgriff-Hernandez, R. Kaunas, A. K. Gaharwar, ACS Nano 2015, 9, 3109–3118;
- 17hA. R. Short, D. Koralla, A. Deshmukh, B. Wissel, B. Stocker, M. Calhoun, D. Dean, J. O. Winter, J. Mater. Chem. B 2015, 3, 7818–7830;
- 17iP. S. Lienemann, M. P. Lutolf, M. Ehrbar, Adv. Drug Delivery Rev. 2012, 64, 1078–1089.
- 18
- 18aJ. Li, D. J. Mooney, Nat. Rev. Mater. 2016, 1, 16071;
- 18bM. M. Pakulska, K. Vulic, R. Y. Tam, M. S. Shoichet, Adv. Mater. 2015, 27, 5002–5008;
- 18cC. Ma, Y. Shi, D. A. Pena, L. Peng, G. Yu, Angew. Chem. Int. Ed. 2015, 54, 7376–7380; Angew. Chem. 2015, 127, 7484–7488;
- 18dS. Merino, C. Martín, K. Kostarelos, M. Prato, E. Vázquez, ACS Nano 2015, 9, 4686–4697;
- 18eI. Tokarev, S. Minko, Adv. Mater. 2010, 22, 3446–3462;
- 18fN. Bhattarai, J. Gunn, M. Zhang, Adv. Drug Delivery Rev. 2010, 62, 83–99.
- 19
- 19aA. K. Yetisen et al., Adv. Mater. 2017, 29, 1606380;
- 19bL. Li, Y. Wang, L. Pan, Y. Shi, W. Cheng, Y. Shi, G. Yu, Nano Lett. 2015, 15, 1146–1151;
- 19cA. Singh, N. A. Peppas, Adv. Mater. 2014, 26, 6530–6541;
- 19dY. Hori, A. M. Winans, C. C. Huang, E. M. Horrigan, D. J. Irvine, Biomaterials 2008, 29, 3671–3682.
- 20H. R. Culver, J. R. Clegg, N. A. Peppas, Acc. Chem. Res. 2017, 50, 170–178.
- 21
- 21aM. Tomczykowa, M. E. Plonska-Brzezinska, Polymers 2019, 11, 350;
- 21bD. Caccavo, S. Cascone, G. Lamberti, A. A. Barba, Chem. Soc. Rev. 2018, 47, 2357–2373;
- 21cY. Shao, H. Jia, T. Cao, D. Liu, Acc. Chem. Res. 2017, 50, 659–668;
- 21dY. S. Zhang, A. Khademhosseini, Science 2017, 356, 500;
- 21eD. L. Taylor, M. in het Panhuis, Adv. Mater. 2016, 28, 9060–9093;
- 21fX. Du, J. Zhou, J. Shi, B. Xu, Chem. Rev. 2015, 115, 13165–13307.
- 22
- 22aC. Echeverria, S. Fernandes, M. Godinho, J. Borges, P. Soares, Gels 2018, 4, 54;
- 22bR. Yoshida, T. Okano, Biomedical Application of Hydrogels, Springer, Berlin, 2010.
- 23F. Peng, G. Li, X. Liu, S. Wu, Z. Tong, J. Am. Chem. Soc. 2008, 130, 16166–16167.
- 24S. Tamesue, S. Noguchi, Y. Kimura, T. Endo, ACS Appl. Mater. Interfaces 2018, 10, 27381–27390.
- 25
- 25aA. Eyigor, F. Bahadori, V. B. Yenigun, M. S. Eroglu, Carbohydr. Polym. 2018, 201, 454–463;
- 25bS. Maeda, T. Kato, H. Kogure, N. Hosoya, Appl. Phys. Lett. 2015, 106, 171909;
- 25cY. S. Kim, M. Liu, Y. Ishida, Y. Ebina, M. Osada, T. Sasaki, T. Hikima, M. Takata, T. Aida, Nat. Mater. 2015, 14, 1002–1007;
- 25dS. Jiang, F. Liu, A. Lerch, L. Ionov, S. Agarwal, Adv. Mater. 2015, 27, 4865–4870;
- 25eQ. Q. Wang et al., J. Mater. Sci. 2013, 48, 5614–5623;
- 25fI. Asmarandei, G. Fundueanu, M. Cristea, V. Harabagiu, M. Constantin, J. Polym. Res. 2013, 20, 293;
- 25gT. Asoh, M. Matsusaki, T. Kaneko, M. Akashi, Adv. Mater. 2008, 20, 2080–2083;
- 25hK. Kuroiwa, T. Shibata, A. Takada, N. Nemoto, N. Kimizuka, J. Am. Chem. Soc. 2004, 126, 2016–2021.
- 26
- 26aJ. Huang, X. Jiang, ACS Appl. Mater. Interfaces 2018, 10, 361–370;
- 26bN. Ninan, A. Forget, V. P. Shastri, N. H. Voelcker, A. Blencowe, ACS Appl. Mater. Interfaces 2016, 8, 28511–28521;
- 26cV. Yesilyurt, M. J. Webber, E. A. Appel, C. Godwin, R. Langer, D. G. Anderson, Adv. Mater. 2016, 28, 86–91;
- 26dD. Suhag, R. Bhatia, S. Das, A. Shakeel, A. Ghosh, A. Singh, O. P. Sinha, S. Chakrabarti, M. Mukherjee, RSC Adv. 2015, 5, 53963–53972;
- 26eL. Li, J. Gu, J. Zhang, Z. Xie, Y. Lu, L. Shen, Q. Dong, Y. Wang, ACS Appl. Mater. Interfaces 2015, 7, 8033–8040;
- 26fE. Cheng, Y. Xing, P. Chen, Y. Sun, D. Zhou, T. Xu, Q. Fan, D. Liu, Angew. Chem. Int. Ed. 2009, 48, 7660–7663; Angew. Chem. 2009, 121, 7796–7799;
- 26gS. Dai, P. Ravi, K. C. Tam, Sof Matter 2008, 4, 435–449;
- 26hS. L. Zhou, S. Matsumoto, H. D. Tian, H. Yamane, A. Ojida, S. Kiyonaka, I. Hamachi, Chem. Eur. J. 2005, 11, 1130–1136.
- 27
- 27aX. Hou, Y. Li, Y. Pan, Y. Jin, H. Xiao, Chem. Commun. 2018, 54, 13714–13717;
- 27bA. F. Greene, M. K. Danielson, A. O. Delawder, K. P. Liles, X. Li, A. Natraj, A. Wellen, J. C. Barnes, Chem. Mater. 2017, 29, 9498–9508;
- 27cX. Yang, G. Liu, L. Peng, J. Guo, L. Tao, J. Yuan, C. Chang, Y. Wei, L. Zhang, Adv. Funct. Mater. 2017, 27, 1703174;
- 27dZ. Sun, F. Lv, L. Cao, L. Liu, Y. Zhang, Z. Lu, Angew. Chem. Int. Ed. 2015, 54, 7944–7948; Angew. Chem. 2015, 127, 8055–8059;
- 27eZ. Sun, Z. Li, Y. He, R. Shen, L. Deng, M. Yang, Y. Liang, Y. Zhang, J. Am. Chem. Soc. 2013, 135, 13379–13386.
- 28
- 28aL. Li, J. M. Scheiger, P. A. Levkin, Adv. Mater. 2019, 31, 1807333;
- 28bI. N. Lee, O. Dobre, D. Richards, C. Ballestrem, J. M. Curran, J. A. Hunt, S. M. Richardson, J. Swift, L. S. Wong, ACS Appl. Mater. Interfaces 2018, 10, 7765–7776;
- 28cY. Dong, G. Jin, Y. Hong, H. Zhu, T. J. Lu, F. Xu, D. Bai, M. Lin, ACS Appl. Mater. Interfaces 2018, 10, 12374–12389;
- 28dR. Wang, Z. Yang, J. Luo, I.-M. Hsing, F. Sun, Proc. Natl. Acad. Sci. USA 2017, 114, 5912–5917;
- 28eZ. L. Pianowski, J. Karcher, K. Schneider, Chem. Commun. 2016, 52, 3143–3146;
- 28fY. Yu, M. Nakano, T. Ikeda, Nature 2003, 425, 145.
- 29
- 29aH. Jiang, L. Fan, S. Yan, F. Li, H. Li, J. Tang, Nanoscale 2019, 11, 2231–2237;
- 29bS. B. Patil, S. Z. Inamdar, K. R. Reddy, A. V. Raghu, S. K. Soni, R. V. Kulkarni, J. Microbiol. Methods 2019, 159, 200–210;
- 29cX. Zhou et al., RSC Adv. 2018, 8, 9812–9821;
- 29dS. Murdan, J. Controlled Release 2003, 92, 1–17.
- 30
- 30aA. Ghadban, A. S. Ahmed, Y. Ping, R. Ramos, N. Arfin, B. Cantaert, R. V. Ramanujan, A. Miserez, Chem. Commun. 2016, 52, 697–700;
- 30bW. Zhao, K. Odelius, U. Edlund, C. Zhao, A. C. Albertsson, Biomacromolecules 2015, 16, 2522–2528;
- 30cH. Wang, J. Yi, S. Mukherjee, P. Banerjee, S. Zhou, Nanoscale 2014, 6, 13001–13011;
- 30dY. Li, G. Huang, X. Zhang, B. Li, Y. Chen, T. Lu, T. J. Lu, F. Xu, Adv. Funct. Mater. 2013, 23, 660–672;
- 30eY. Zhou, N. Sharma, P. Deshmukh, R. K. Lakhman, M. Jain, R. M. Kasi, J. Am. Chem. Soc. 2012, 134, 1630–1641;
- 30fS. Reinicke, S. Döhler, S. Tea, M. Krekhova, R. Messing, A. M. Schmidt, H. Schmalz, Soft Matter 2010, 6, 2760–2773.
- 31
- 31aG. Li, Q. Yan, H. Xia, Y. Zhao, ACS Appl. Mater. Interfaces 2015, 7, 12067–12073;
- 31bR. Ebrahimi, G. Tarhande, S. Rafiei, Org. Chem. Int. 2012, 2012, 343768.
10.1155/2012/343768 Google Scholar
- 32
- 32aJ. Zhang, L. Mou, X. Jiang, Anal. Chem. 2018, 90, 11423–11430;
- 32bM. Qin, M. Sun, R. Bai, Y. Mao, X. Qian, D. Sikka, Y. Zhao, H. J. Qi, Z. Suo, X. He, Adv. Mater. 2018, 30, 1800468;
- 32cQ. Zhang, M. J. Serpe, S. M. Mugo, Polymers 2017, 9, 436;
- 32dN. Griffete, H. Frederich, A. Maître, S. Ravaine, M. M. Chehimi, C. Mangeney, Langmuir 2012, 28, 1005–1012.
- 33
- 33aJ. Zheng et al., Nat. Commun. 2019, 10, 1604;
- 33bS. Yu, X. Zhang, G. Tan, L. Tian, D. Liu, Y. Liu, X. Yang, W. Pan, Carbohydr. Polym. 2017, 155, 208–217;
- 33cN. Oliva, J. Conde, K. Wang, N. Artzi, Acc. Chem. Res. 2017, 50, 669–679;
- 33dM. Ni, N. Zhang, W. Xia, X. Wu, C. Yao, X. Liu, X. Y. Hu, C. Lin, L. Wang, J. Am. Chem. Soc. 2016, 138, 6643–6649;
- 33eT. Zhou, X. Zhao, L. Liu, P. Liu, Nanoscale 2015, 7, 12051–12060;
- 33fA. Concheiro, C. Alvarez-Lorenzo, Adv. Drug Delivery Rev. 2013, 65, 1188–1203.
- 34
- 34aH. W. Ooi, S. Hafeez, C. A. Van Blitterswijk, L. Moroni, M. B. Baker, Mater. Horiz. 2017, 4, 1020–1040;
- 34bN. Eslahi, M. Abdorahim, A. Simchi, Biomacromolecules 2016, 17, 3441–3463;
- 34cT. T. Lau, D. A. Wang, Nanomedicine 2013, 8, 655–668;
- 34dS. Garty, N. Kimelman-Bleich, Z. Hayouka, D. Cohn, A. Friedler, G. Pelled, D. Gazit, Biomacromolecules 2010, 11, 1516–1526.
- 35
- 35aZ. Deng, Y. Guo, X. Zhao, P. X. Ma, B. Guo, Chem. Mater. 2018, 30, 1729–1742;
- 35bC. Wang, M. Fadeev, J. Zhang, M. Vázquez-González, G. Davidson-Rozenfeld, H. Tian, I. Willner, Chem. Sci. 2018, 9, 7145–7152;
- 35cA. J. R. Amaral, G. Pasparakis, Polym. Chem. 2017, 8, 6464–6648;
- 35dW. Xie, Q. Gao, Z. Guo, D. Wang, F. Gao, X. Wang, Y. Wei, L. Zhao, ACS Appl. Mater. Interfaces 2017, 9, 33660–33673;
- 35eW. Zheng et al., J. Am. Chem. Soc. 2016, 138, 4927–4937;
- 35fS. Basak, J. Nanda, A. Banerjee, Chem. Commun. 2014, 50, 2356–2359.
- 36
- 36aF. Zhang, L. Xiong, Y. Ai, Z. Liang, Q. Liang, Adv. Sci. 2018, 5, 1800450;
- 36bW. Lu, X. Le, J. Zhang, Y. Huang, T. Chen, Chem. Soc. Rev. 2017, 46, 1284–1294;
- 36cY. Y. Xiao, X. L. Gong, Y. Kang, Z. C. Jiang, S. Zhang, B. J. Li, Chem. Commun. 2016, 52, 10609–10612;
- 36dY. N. Chen, L. Peng, T. Liu, Y. Wang, S. Shi, H. Wang, ACS Appl. Mater. Interfaces 2016, 8, 27199–27206;
- 36eB. Q. Y. Chan, Z. W. K. Low, S. J. W. Heng, S. Y. Chan, C. Owh, X. J. Loh, ACS Appl. Mater. Interfaces 2016, 8, 10070–10087;
- 36fJ. Huang, L. Zhao, T. Wang, W. Sun, Z. Tong, ACS Appl. Mater. Interfaces 2016, 8, 12384–12392;
- 36gG. Li, H. Zhang, D. Fortin, H. Xia, Y. Zhao, Langmuir 2015, 31, 11709–11716;
- 36hH. Thérien-Aubin, Z. L. Wu, Z. Nie, E. Kumacheva, J. Am. Chem. Soc. 2013, 135, 4834–4839;
- 36iR. D. Harris, J. T. Auletta, S. A. M. Motlagh, M. J. Lawless, N. M. Perri, S. Saxena, L. M. Weiland, D. H. Waldeck, W. W. Clark, T. Y. Meyer, ACS Macro Lett. 2013, 2, 1095–1099.
- 37
- 37aH. Yuk, S. Lin, C. Ma, M. Takaffoli, N. X. Fang, X. Zhao, Nat. Commun. 2017, 8, 14230;
- 37bT. D. Nguyen, R. Schulman, Q. Huang, D. H. Gracias, J. Liu, C. Yoon, J. Guo, A. Cangialosi, Science 2017, 357, eaan0218;
- 37cJ. C. Breger, C. Yoon, R. Xiao, H. R. Kwag, M. O. Wang, J. P. Fisher, T. D. Nguyen, D. H. Gracias, ACS Appl. Mater. Interfaces 2015, 7, 3398–3405;
- 37dY. Yue, T. Kurokawa, M. A. Haque, T. Nakajima, T. Nonoyama, X. Li, I. Kajiwara, J. P. Gong, Nat. Commun. 2014, 5, 4656;
- 37eE. Wang, M. S. Desai, S. W. Lee, Nano Lett. 2013, 13, 2826–2830;
- 37fA. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, J. Aizenberg, Science 2007, 315, 487–490.
- 38
- 38aR. Tognato, A. R. Armiento, V. Bonfrate, R. Levato, J. Malda, M. Alini, D. Eglin, G. Giancane, T. Serra, Adv. Funct. Mater. 2019, 29, 1804647;
- 38bH. Banerjee, M. Suhail, H. Ren, Biomimetics 2018, 3, 15.
- 39K. Bauri, M. Nandi, P. De, Polym. Chem. 2018, 9, 1257–1287.
- 40M. L. Oyen, Int. Mater. Rev. 2014, 59, 44–59.
- 41E. Caló, V. V. Khutoryanskiy, Eur. Polym. J. 2015, 65, 252–267.
- 42M. Massimiliano, B. Eleonora, I. Donati, S. Paoletti, A. Travan, Polysaccharide Hydrogels, Pan Stanford, Singapore, 2016.
- 43
- 43aD. Ye, P. Yang, X. Lei, D. Zhang, L. Li, C. Chang, P. Sun, L. Zhang, Chem. Mater. 2018, 30, 5175–5183;
- 43bC. C. Tsai, B. H. Morrow, W. Chen, G. F. Payne, J. Shen, Macromolecules 2017, 50, 5946–5952;
- 43cD. Ye, Q. Cheng, Q. Zhang, Y. Wang, C. Chang, L. Li, H. Peng, L. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 43154–43162;
- 43dD. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang, J. Cai, Adv. Funct. Mater. 2016, 26, 6279–6287;
- 43eX. Ma, L. Guo, Q. Ji, Y. Tan, Y. Xing, Y. Xia, Polym. Chem. 2016, 7, 26–30;
- 43fZ. Wang, J. Nie, W. Qin, Q. Hu, B. Z. Tang, Nat. Commun. 2016, 7, 12033.
- 44
- 44aB. Ye, S. Zhang, R. Li, L. Li, L. Lu, C. Zhou, Compos. Sci. Technol. 2018, 156, 238–246;
- 44bM. Rastello De Boisseson, M. Leonard, P. Hubert, P. Marchal, A. Stequert, C. Castel, E. Favre, E. Dellacherie, J. Colloid Interface Sci. 2004, 273, 131–139.
- 45
- 45aX. Le, W. Lu, J. Zheng, D. Tong, N. Zhao, C. Ma, H. Xiao, J. Zhang, Y. Huang, T. Chen, Chem. Sci. 2016, 7, 6715–6720;
- 45bR. P. Narayanan, G. Melman, N. J. Letourneau, N. L. Mendelson, A. Melman, Biomacromolecules 2012, 13, 2465–2471;
- 45cA. R. Fajardo, M. B. Silva, L. C. Lopes, J. F. Piai, A. F. Rubira, E. C. Muniz, RSC Adv. 2012, 2, 11095–11103;
- 45dX. W. Shi, C. Y. Tsao, X. Yang, Y. Liu, P. Dykstra, G. W. Rubloff, R. Ghodssi, W. E. Bentley, G. F. Payne, Adv. Funct. Mater. 2009, 19, 2074–2080.
- 46E. S. Dragan, Chem. Eng. J. 2014, 243, 572–590.
- 47
- 47aX. Chen, X. Qiu, M. Hou, X. Wu, Y. Dong, Y. Ma, L. Yang, Y. Wei, Langmuir 2019, 35, 1475–1482;
- 47bJ. Qu, X. Zhao, P. X. Ma, B. Guo, Acta Biomater. 2017, 58, 168–180;
- 47cW. Wei, J. Li, X. Qi, Y. Zhong, G. Zuo, X. Pan, T. Su, J. Zhang, W. Dong, Carbohydr. Polym. 2017, 177, 275–283;
- 47dL. Shi, Y. Han, J. Hilborn, D. Ossipov, Chem. Commun. 2016, 52, 11151–11154;
- 47eX. Qi, W. Wei, J. Li, Y. Liu, X. Hu, J. Zhang, L. Bi, W. Dong, ACS Biomater. Sci. Eng. 2015, 1, 1287–1299.
- 48S. W. Jung, J. H. Byun, S. H. Oh, T. H. Kim, J. S. Park, G. J. Rho, J. H. Lee, Carbohydr. Polym. 2018, 180, 216–225.
- 49
- 49aX. Wang, C. Wei, B. Cao, L. Jiang, Y. Hou, J. Chang, ACS Appl. Mater. Interfaces 2018, 10, 18338–18350;
- 49bA. Abbadessa, V. H. M. Mouser, M. M. Blokzijl, D. Gawlitta, W. J. A. Dhert, W. E. Hennink, J. Malda, T. Vermonden, Biomacromolecules 2016, 17, 2137–2147;
- 49cJ. Sun, H. Tan, Materials 2013, 6, 1285–1309;
- 49dM. K. Ghahramanpoor, S. A. H. Najafabadi, M. Abdouss, F. Bagheri, M. B. Eslaminejad, J. Mater. Sci. Mater. Med. 2011, 22, 2365–2375.
- 50
- 50aE. Zhang, Q. Guo, F. Ji, X. Tian, J. Cui, Y. Song, H. Sun, J. Li, F. Yao, Acta Biomater. 2018, 74, 439–453;
- 50bS. P. Miguel, M. P. Ribeiro, H. Brancal, P. Coutinho, I. J. Correia, Carbohydr. Polym. 2014, 111, 366–373;
- 50cC. Radhakumary, M. Antonty, K. Sreenivasan, Carbohydr. Polym. 2011, 83, 705–713.
- 51
- 51aP. K. Sharma, S. Taneja, Y. Singh, ACS Appl. Mater. Interfaces 2018, 10, 30936–30945;
- 51bT. Dai, C. Wang, Y. Wang, W. Xu, J. Hu, Y. Cheng, ACS Appl. Mater. Interfaces 2018, 10, 15163–15173;
- 51cK. Yan, Y. Xiong, S. Wu, W. E. Bentley, H. Deng, Y. Du, G. F. Payne, X. W. Shi, ACS Appl. Mater. Interfaces 2016, 8, 19780–19786;
- 51dM. Fleischer, C. Schmuck, Chem. Commun. 2014, 50, 10464–10467.
- 52
- 52aG. E. Giammanco, B. Carrion, R. M. Coleman, A. D. Ostrowski, ACS Appl. Mater. Interfaces 2016, 8, 14423–14429;
- 52bG. E. Giammanco, A. D. Ostrowski, Chem. Mater. 2015, 27, 4922–4925;
- 52cR. Luo, Y. Cao, P. Shi, C. H. Chen, Small 2014, 10, 4886–4894.
- 53
- 53aH. Xiao, W. Lu, X. Le, C. Ma, Z. Li, J. Zheng, J. Zhang, Y. Huang, T. Chen, Chem. Commun. 2016, 52, 13292–13295;
- 53bH. Meng, P. Xiao, J. Gu, X. Wen, J. Xu, C. Zhao, J. Zhang, T. Chen, Chem. Commun. 2014, 50, 12277–12280.
- 54
- 54aJ. L. Holloway, H. Ma, R. Rai, K. D. Hankenson, J. A. Burdick, Macromol. Biosci. 2015, 15, 1218–1223;
- 54bK. B. Fonseca, D. B. Gomes, K. Lee, S. G. Santos, A. Sousa, E. A. Silva, D. J. Mooney, P. L. Granja, C. C. Barrias, Biomacromolecules 2014, 15, 380–390.
- 55
- 55aJ. Nie, B. Pei, Z. Wang, Q. Hu, Carbohydr. Polym. 2019, 205, 225–235;
- 55bJ. Radhakrishnan, A. Subramanian, U. M. Krishnan, S. Sethuraman, Biomacromolecules 2017, 18, 1–26;
- 55cX. Xu, A. K. Jha, D. A. Harrington, M. C. Farach-Carson, X. Jia, Soft Matter 2012, 8, 3280–3294.
- 56J. Shi, W. Guobao, H. Chen, W. Zhong, X. Qiu, M. M. Q. Xing, Polym. Chem. 2014, 5, 6180–6189.
- 57H. Tan, J. P. Rubin, K. G. Marra, Organogenesis 2010, 6, 173–180.
- 58R. C. Luo, Z. H. Lim, W. Li, P. Shi, C. H. Chen, Chem. Commun. 2014, 50, 7052–7055.
- 59Q. Chen, L. Zhu, C. Zhao, Q. Wang, J. Zheng, Adv. Mater. 2013, 25, 4171–4176.
- 60G. E. Giammanco, C. T. Sosnofsky, A. D. Ostrowski, ACS Appl. Mater. Interfaces 2015, 7, 3068–3076.
- 61M. Fadeev, G. Davidson-Rozenfeld, Y. Biniuri, R. Yakobi, R. Cazelles, M. A. Aleman-Garcia, I. Willner, Polym. Chem. 2018, 9, 2905–2912.
- 62
- 62aS. Tan, K. Ladewig, Q. Fu, A. Blencowe, G. G. Qiao, Macromol. Rapid Commun. 2014, 35, 1166–1184;
- 62bG. Chen, M. Jiang, Chem. Soc. Rev. 2011, 40, 2254–2266;
- 62cK. L. Liu, Z. Zhang, J. Li, Soft Matter 2011, 7, 11290–11297.
- 63A. Harada, Y. Takashima, M. Nakahata, Acc. Chem. Res. 2014, 47, 2128–2140.
- 64
- 64aC. Xu, Y. L. Wu, Z. Li, X. J. Loh, Mater. Chem. Front. 2019, 3, 181–192;
- 64bG. Liu, Q. Yuan, G. Hollett, W. Zhao, Y. Kang, J. Wu, Polym. Chem. 2018, 9, 3436–3449;
- 64cJ. Zhang, P. X. Ma, Adv. Drug Delivery Rev. 2013, 65, 1215–1233.
- 65
- 65aA. Wu, P. Sun, N. Sun, L. Zheng, Chem. Eur. J. 2018, 24, 10452–10459;
- 65bZ. Zheng, J. Hu, H. Wang, J. Huang, Y. Yu, Q. Zhang, Y. Cheng, ACS Appl. Mater. Interfaces 2017, 9, 24511–24517;
- 65cD. Patra, H. Zhang, S. Sengupta, A. Sen, ACS Nano 2013, 7, 7674–7679.
- 66
- 66aL. Peng, H. Zhang, A. Feng, M. Huo, Z. Wang, J. Hu, W. Gao, J. Yuan, Polym. Chem. 2015, 6, 3652–3659;
- 66bP. Du, J. Liu, G. Chen, M. Jiang, Langmuir 2011, 27, 9602–9608.
- 67
- 67aC. Bottari et al., Phys. Chem. Chem. Phys. 2017, 19, 22555–22563;
- 67bX. Xu, Z. Huang, Z. Huang, X. Zhang, S. He, X. Sun, Y. Shen, M. Yan, C. Zhao, ACS Appl. Mater. Interfaces 2017, 9, 20361–20375;
- 67cC. Ma, T. Li, Q. Zhao, X. Yang, J. Wu, Y. Luo, T. Xie, Adv. Mater. 2014, 26, 5665–5669;
- 67dY. Chen, X. H. Pang, C. M. Dong, Adv. Funct. Mater. 2010, 20, 579–586.
- 68
- 68aP. Wang, C. Huang, Y. Xing, W. Fang, J. Ren, H. Yu, G. Wang, Langmuir 2019, 35, 1021–1031;
- 68bJ. Wang, Q. Li, S. Yi, X. Chen, Soft Matter 2017, 13, 6490–6498;
- 68cX. Wang, C. Wang, Q. Zhang, Y. Cheng, Chem. Commun. 2016, 52, 978–981.
- 69Y. Takashima, T. Nakayama, M. Miyauchi, Y. Kawaguchi, H. Yamaguchi, A. Harada, Chem. Lett. 2004, 33, 890–891.
- 70M. Nakahata, Y. Takashima, H. Yamaguchi, A. Harada, Nat. Commun. 2011, 2, 511.
- 71K. Miyamae, M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2015, 54, 8984–8987; Angew. Chem. 2015, 127, 9112–9115.
- 72Z. Wang, Y. Ren, Y. Zhu, L. Hao, Y. Chen, G. An, H. Wu, X. Shi, C. Mao, Angew. Chem. Int. Ed. 2018, 57, 9008–9012; Angew. Chem. 2018, 130, 9146–9150.
- 73H. Yamaguchi, Y. Kobayashi, R. Kobayashi, Y. Takashima, A. Hashidzume, A. Harada, Nat. Commun. 2012, 3, 603.
- 74M. Nakahata, Y. Takashima, A. Harada, Angew. Chem. Int. Ed. 2014, 53, 3617–3621; Angew. Chem. 2014, 126, 3691–3695.
- 75T. Nakamura, Y. Takashima, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2014, 5, 4662.
- 76Y. Takashima, S. Hatanaka, M. Otsubo, M. Nakahata, T. Kakuta, A. Hashidzume, H. Yamaguchi, A. Harada, Nat. Commun. 2012, 3, 1270.
- 77M. Nakahata, Y. Takashima, A. Hashidzume, A. Harada, Angew. Chem. Int. Ed. 2013, 52, 5731–5735; Angew. Chem. 2013, 125, 5843–5847.
- 78S. Ikejiri, Y. Takashima, M. Osaki, H. Yamaguchi, A. Harada, J. Am. Chem. Soc. 2018, 140, 17308–17315.
- 79K. Iwaso, Y. Takashima, A. Harada, Nat. Chem. 2016, 8, 625–632.
- 80H. Wang, C. N. Zhu, H. Zeng, X. Ji, T. Xie, X. Yan, Z. L. Wu, F. Huang, Adv. Mater. 2019, 31, 1807328.
- 81
- 81aD. Collin, K. Gehring, J. Am. Chem. Soc. 1998, 120, 4069–4072;
- 81bS. Nonin, J. L. Leroy, J. Mol. Biol. 1996, 261, 399–414;
- 81cJ. Leroy, M. Guéron, J. Mergny, C. Helene, Nucleic Acids Res. 1994, 22, 1600–1606;
- 81dK. Gehring, J. Leroy, M. Gueron, Nature 1993, 363, 561–565.
- 82
- 82aY. Hu, A. Cecconello, A. Idili, F. Ricci, I. Willner, Angew. Chem. Int. Ed. 2017, 56, 15210–15233; Angew. Chem. 2017, 129, 15410–15434;
- 82bA. Idili, K. W. Plaxco, A. Vallée-Bélisle, F. Ricci, ACS Nano 2013, 7, 10863–10869;
- 82cY. Chen, S. H. Lee, C. Mao, Angew. Chem. Int. Ed. 2004, 43, 5335–5338; Angew. Chem. 2004, 116, 5449–5452;
- 82dA. M. Soto, J. Loo, L. A. Marky, J. Am. Chem. Soc. 2002, 124, 14355–14363;
- 82eR. Haner, P. B. Dervan, Biochemistry 1990, 29, 9761–9765.
- 83
- 83aG. W. Collie, G. N. Parkinson, Chem. Soc. Rev. 2011, 40, 5867–5892;
- 83bJ. T. Davis, G. P. Spada, Chem. Soc. Rev. 2007, 36, 296–313;
- 83cS. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, S. Neidle, Nucleic Acids Res. 2006, 34, 5402–5415.
- 84
- 84aK. S. Park, C. Jung, H. G. Park, Angew. Chem. Int. Ed. 2010, 49, 9757–9760; Angew. Chem. 2010, 122, 9951–9954;
- 84bR. Freeman, T. Finder, I. Willner, Angew. Chem. Int. Ed. 2009, 48, 7818–7821; Angew. Chem. 2009, 121, 7958–7961;
- 84cA. Ono, S. Cao, H. Togashi, M. Tashiro, T. Fujimoto, T. MacHinami, S. Oda, Y. Miyake, I. Okamoto, Y. Tanaka, Chem. Commun. 2008, 4825–4827;
- 84dY. Miyake et al., J. Am. Chem. Soc. 2006, 128, 2172–2173.
- 85
- 85aX. Liang, T. Mochizuki, H. Asanuma, Small 2009, 5, 1761–1768;
- 85bH. Asanuma, T. Takarada, T. Yoshida, D. Tamaru, X. Liang, M. Komiyama, Angew. Chem. Int. Ed. 2001, 40, 2671–2673;
10.1002/1521-3773(20010716)40:14<2671::AID-ANIE2671>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2743–2745.
- 86
- 86aD. Y. Zhang, G. Seelig, Nat. Chem. 2011, 3, 103–113;
- 86bQ. Li, G. Luan, Q. Guo, J. Liang, Nucleic Acids Res. 2002, 30, e5.
- 87
- 87aM. Famulok, G. Mayer, Acc. Chem. Res. 2011, 44, 1349–1358;
- 87bI. Willner, M. Zayats, Angew. Chem. Int. Ed. 2007, 46, 6408–6418; Angew. Chem. 2007, 119, 6528–6538;
- 87cM. N. Stojanovic, P. de Prada, D. W. Landry, J. Am. Chem. Soc. 2001, 123, 4928–4931;
- 87dR. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, J. Feigon, Proc. Natl. Acad. Sci. USA 1993, 90, 3745–3749.
- 88
- 88aP. Travascio, P. K. Witting, A. G. Mauk, D. Sen, J. Am. Chem. Soc. 2001, 123, 1337–1348;
- 88bP. Travascio, A. J. Bennet, D. Y. Wang, S. Dipankar, Chem. Biol. 1999, 6, 779–787.
- 89
- 89aI. Willner, B. Shlyahovsky, M. Zayats, B. Willner, Chem. Soc. Rev. 2008, 37, 1153–1165;
- 89bM. Famulok, J. S. Hartig, G. Mayer, Chem. Rev. 2007, 107, 3715–3743.
- 90F. Wang, X. Liu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 1098–1129; Angew. Chem. 2015, 127, 1112–1144.
- 91
- 91aX. Liu, C. H. Lu, I. Willner, Acc. Chem. Res. 2014, 47, 1673–1680;
- 91bF. Wang, C.-H. Lu, I. Willner, Chem. Rev. 2014, 114, 2881–2941;
- 91cC. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376–391;
- 91dJ. Bath, A. J. Turberfield, Nat. Nanotechnol. 2007, 2, 275–284.
- 92
- 92aM. Vázquez-González, I. Willner, Langmuir 2018, 34, 14692–14710;
- 92bW. C. Liao, I. Willner, Adv. Funct. Mater. 2017, 27, 1702732;
- 92cC. H. Lu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 12212–12235; Angew. Chem. 2015, 127, 12380–12405.
- 93
- 93aJ. Wang, L. Yue, S. Wang, I. Willner, ACS Nano 2018, 12, 12324–12336;
- 93bJ. Wang, Z. Zhou, L. Yue, S. Wang, I. Willner, Nano Lett. 2018, 18, 2718–2724;
- 93cN. Wu, I. Willner, Nano Lett. 2016, 16, 6650–6655;
- 93dN. Wu, I. Willner, Nano Lett. 2016, 16, 2867–2872.
- 94
- 94aZ. Zhou, X. Liu, L. Yue, I. Willner, ACS Nano 2018, 12, 10725–10735;
- 94bA. Niazov-Elkan, E. Golub, E. Sharon, D. Balogh, I. Willner, Small 2014, 10, 2883–2891;
- 94cM. S. Han, A. K. R. Lytton-Jean, C. A. Mirkin, J. Am. Chem. Soc. 2006, 128, 4954–4955;
- 94dY. H. Jung, K. B. Lee, Y. G. Kim, I. S. Choi, Angew. Chem. Int. Ed. 2006, 45, 5960–5963; Angew. Chem. 2006, 118, 6106–6109.
- 95
- 95aZ. Zhou, G. Luo, V. Wulf, I. Willner, Anal. Chem. 2018, 90, 6468–6476;
- 95bY. Du, B. Li, E. Wang, Acc. Chem. Res. 2013, 46, 203–213;
- 95cJ. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948–1998.
- 96W. H. Chen, X. Yu, W. C. Liao, Y. S. Sohn, A. Cecconello, A. Kozell, R. Nechushtai, I. Willner, Adv. Funct. Mater. 2017, 27, 1702102.
- 97
- 97aW. H. Chen, X. Yu, A. Cecconello, Y. S. Sohn, R. Nechushtai, I. Willner, Chem. Sci. 2017, 8, 5769–5780;
- 97bA. Cecconello, L. V. Besteiro, A. O. Govorov, I. Willner, Nat. Rev. Mater. 2017, 2, 17039;
- 97cF. Huang, W. C. Liao, Y. S. Sohn, R. Nechushtai, C. H. Lu, I. Willner, J. Am. Chem. Soc. 2016, 138, 8936–8945.
- 98S. H. Um, J. B. Lee, N. Park, S. Y. Kwon, C. C. Umbach, D. Luo, Nat. Mater. 2006, 5, 797–801.
- 99
- 99aJ. B. Lee et al., Nat. Nanotechnol. 2012, 7, 816–820;
- 99bJ. S. Kahn, R. C. H. Ruiz, S. Sureka, S. Peng, T. L. Derrien, D. An, D. Luo, Biomacromolecules 2016, 17, 2019–2026;
- 99cW. Xu, Y. Huang, H. Zhao, P. Li, G. Liu, J. Li, C. Zhu, L. Tian, Chem. Eur. J. 2017, 23, 18276–18281.
- 100H. Qi, M. Ghodousi, Y. Du, C. Grun, H. Bae, P. Yin, A. Khademhosseini, Nat. Commun. 2013, 4, 2275.
- 101
- 101aT. Nöll, H. Schönherr, D. Wesner, M. Schopferer, T. Paululat, G. Nöll, Angew. Chem. Int. Ed. 2014, 53, 8328–8332; Angew. Chem. 2014, 126, 8468–8472;
- 101bH. Jiang, V. Pan, S. Vivek, E. R. Weeks, Y. Ke, ChemBioChem 2016, 17, 1156–1162;
- 101cM. Oishi, K. Nakatani, Small 2019, 15, 1900490.
- 102
- 102aE. Cheng, Y. Xing, P. Chen, Y. Sun, D. Zhou, T. Xu, Q. Fan, D. Liu, Angew. Chem. Int. Ed. 2009, 48, 7660–7663; Angew. Chem. 2009, 121, 7796–7799;
- 102bL. Zhang, J. Lei, L. Liu, C. Li, H. Ju, Anal. Chem. 2013, 85, 11077–11082;
- 102cJ. Li et al., J. Am. Chem. Soc. 2015, 137, 1412–1415;
- 102dA. J. Simon, L. T. Walls-Smith, K. W. Plaxco, Analyst 2018, 143, 2531–2538.
- 103W. Guo, X. J. Qi, R. Orbach, C. H. Lu, L. Freage, I. Mironi-Harpaz, D. Seliktar, H. H. Yang, I. Willner, Chem. Commun. 2014, 50, 4065–4068.
- 104W. Guo, C. H. Lu, X. J. Qi, R. Orbach, M. Fadeev, H. H. Yang, I. Willner, Angew. Chem. Int. Ed. 2014, 53, 10134–10138; Angew. Chem. 2014, 126, 10298–10302.
- 105J. Ren, Y. Hu, C. H. Lu, W. Guo, M. A. Aleman-Garcia, F. Ricci, I. Willner, Chem. Sci. 2015, 6, 4190–4195.
- 106C. H. Lu, W. Guo, X. J. Qi, A. Neubauer, Y. Paltiel, I. Willner, Chem. Sci. 2015, 6, 6659–6664.
- 107
- 107aL. Peng, M. You, Q. Yuan, C. Wu, D. Han, Y. Chen, Z. Zhong, J. Xue, W. Tan, J. Am. Chem. Soc. 2012, 134, 12302–12307;
- 107bH. Kang, H. Liu, X. Zhang, J. Yan, Z. Zhu, L. Peng, H. Yang, Y. Kim, W. Tan, Langmuir 2011, 27, 399–408.
- 108Y. Hu, C. H. Lu, W. Guo, M. A. Aleman-Garcia, J. Ren, I. Willner, Adv. Funct. Mater. 2015, 25, 6867–6874.
- 109
- 109aC. Wang, M. Fadeev, M. Vázquez-González, I. Willner, Adv. Funct. Mater. 2018, 28, 1803111;
- 109bZ. Li, G. Davidson-Rozenfeld, M. Vázquez-González, M. Fadeev, J. Zhang, H. Tian, I. Willner, J. Am. Chem. Soc. 2018, 140, 17691–17701.
- 110C. H. Lu, W. Guo, Y. Hu, X. J. Qi, I. Willner, J. Am. Chem. Soc. 2015, 137, 15723–15731.
- 111Y. Hu, J. S. Kahn, W. Guo, F. Huang, M. Fadeev, D. Harries, I. Willner, J. Am. Chem. Soc. 2016, 138, 16112–16119.
- 112X. Liu, J. Zhang, M. Fadeev, Z. Li, V. Wulf, H. Tian, I. Willner, Chem. Sci. 2019, 10, 1008–1016.
- 113
- 113aT. Rossow, S. Sebastian, Supramolecular Polymer Networks and Gels, Springer, Berlin, 2015;
10.1007/978-3-319-15404-6_1 Google Scholar
- 113bS. M. Mantooth, B. G. Munoz-Robles, M. J. Webber, Macromol. Biosci. 2019, 19, 1800281.
- 114
- 114aD. Lasne, G. A. Blab, S. Berciaud, M. Heine, L. Groc, D. Choquet, L. Cognet, B. Lounis, Biophys. J. 2006, 91, 4598–4604;
- 114bL. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, Proc. Natl. Acad. Sci. USA 2003, 100, 11350–11355.
- 115
- 115aS. Xu, X. Bai, L. Wang, Inorg. Chem. Front. 2018, 5, 751–759;
- 115bM.-H. Chien, M. Brameshuber, B. K. Rossboth, G. J. Schütz, S. Schmid, Proc. Natl. Acad. Sci. USA 2018, 115, 11150–11155;
- 115cP. K. Jain, X. Huang, I. H. El-sayed, M. A. El-sayed, Acc. Chem. Res. 2008, 41, 1578–1586.
- 116
- 116aG. Von Maltzahn, J. H. Park, K. Y. Lin, N. Singh, C. Schwöppe, R. Mesters, W. E. Berdel, E. Ruoslahti, M. J. Sailor, S. N. Bhatia, Nat. Mater. 2011, 10, 545–552;
- 116bK. Jain Ivan, H. El-Sayed Mostafa, A. El-Sayed, Nano Today 2007, 2, 18–29.
- 117
- 117aY. Wu, H. Wang, F. Gao, Z. Xu, F. Dai, W. Liu, Adv. Funct. Mater. 2018, 28, 1801000;
- 117bS. Lal, S. E. Clare, N. J. Halas, Acc. Chem. Res. 2008, 41, 1842–1845.
- 118
- 118aP. D. Dongare et al., Proc. Natl. Acad. Sci. 2017, 114, 6936–6941;
- 118bO. Neumann, A. S. Urban, J. Day, S. Lal, P. Nordlander, N. J. Halas, ACS Nano 2013, 7, 42–49.
- 119
- 119aX. Lou, Y. Zhang, ACS Appl. Mater. Interfaces 2013, 5, 6276–6284;
- 119bM. Li, Y. C. Lin, C. C. Wu, H. S. Liu, Nucleic Acids Res. 2005, 33, e184;
- 119cH. Li, J. Huang, J. Lv, H. An, X. Zhang, Z. Zhang, C. Fan, J. Hu, Angew. Chem. Int. Ed. 2005, 44, 5100–5103; Angew. Chem. 2005, 117, 5230–5233.
- 120A. Sutton, T. Shirman, J. V. I. Timonen, G. T. England, P. Kim, M. Kolle, T. Ferrante, L. D. Zarzar, E. Strong, J. Aizenberg, Nat. Commun. 2017, 8, 14700.
- 121C. Wang, X. Liu, V. Wulf, M. Vázquez-González, M. Fadeev, I. Willner, ACS Nano 2019, 13, 3424–3433.
- 122
- 122aY. Wu, D. Wang, I. Willner, Y. Tian, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 7790–7794; Angew. Chem. 2018, 130, 7916–7920;
- 122bY. Huang, L. Fang, Z. Zhu, Y. Ma, L. Zhou, X. Chen, D. Xu, C. Yang, Biosens. Bioelectron. 2016, 85, 496–502;
- 122cY. Ma et al., Lab Chip 2016, 16, 3097–3104;
- 122dX. Wei, T. Tian, S. Jia, Z. Zhu, Y. Ma, J. Sun, Z. Lin, C. J. Yang, Anal. Chem. 2015, 87, 4275–4282;
- 122eZ. Zhu, Z. Guan, S. Jia, Z. Lei, S. Lin, H. Zhang, Y. Ma, Z. Q. Tian, C. J. Yang, Angew. Chem. Int. Ed. 2014, 53, 12503–12507; Angew. Chem. 2014, 126, 12711–12715.
- 123
- 123aW. H. Chen, W. C. Liao, Y. S. Sohn, M. Fadeev, A. Cecconello, R. Nechushtai, I. Willner, Adv. Funct. Mater. 2018, 28, 1705137;
- 123bW.-C. Liao, S. Lilienthal, J. S. Kahn, M. Riutin, Y. S. Sohn, R. Nechushtai, I. Willner, Chem. Sci. 2017, 8, 3362–3373.
- 124J. S. Kahn, A. Trifonov, A. Cecconello, W. Guo, C. Fan, I. Willner, Nano Lett. 2015, 15, 7773–7778.
- 125A. Dasgupta, J. H. Mondal, D. Das, RSC Adv. 2013, 3, 9117–9149.
- 126
- 126aX. Q. Dou, C. L. Feng, Adv. Mater. 2017, 29, 1604062;
- 126bJ. Li, R. Xing, S. Bai, X. Yan, Soft Matter 2019, 15, 1704–1715;
- 126cP. Chakraborty, T. Guterman, N. Adadi, M. Yadid, T. Brosh, L. Adler-Abramovich, T. Dvir, E. Gazit, ACS Nano 2019, 13, 163–175.
- 127
- 127aX. Li, Y. Gao, Y. Kuang, B. Xu, Chem. Commun. 2010, 46, 5364–5366;
- 127bY. Huang, Z. Qiu, Y. Xu, J. Shi, H. Lin, Y. Zhang, Org. Biomol. Chem. 2011, 9, 2149–2155;
- 127cM. E. Roth-Konforti, M. Comune, M. Halperin-Sternfeld, I. Grigoriants, D. Shabat, L. Adler-Abramovich, Macromol. Rapid Commun. 2018, 39, 1800588.
- 128
- 128aM. Ikeda, T. Tanida, T. Yoshii, I. Hamachi, Adv. Mater. 2011, 23, 2819–2822;
- 128bB. Xue, M. Qin, T. Wang, J. Wu, D. Luo, Q. Jiang, Y. Li, Y. Cao, W. Wang, Adv. Funct. Mater. 2016, 26, 9053–9062;
- 128cH. Shigemitsu, T. Fujisaku, W. Tanaka, R. Kubota, S. Minami, K. Urayama, I. Hamachi, Nat. Nanotechnol. 2018, 13, 165–172.
- 129
- 129aT. Miyata, Polym. J. 2010, 42, 277–289;
- 129bN. Hotz, L. Wilcke, W. Weber, Macromol. Rapid Commun. 2013, 34, 1594–1610.
- 130
- 130aM. Voorhoeve, Z. Wu, H. Yntema, A. Dirac, Nature 2004, 428, 302–304;
- 130bT. Miyata, A. Jikihara, K. Nakamae, A. S. Hoffman, J. Biomater. Sci. Polym. Ed. 2004, 15, 1085–1098;
- 130cT. Miyata, A. Jikihara, K. Nakamae, A. S. Hoffman, Macromol. Chem. Phys. 1996, 197, 1135–1146.
- 131
- 131aT. Miyata, M. Jige, T. Nakaminami, T. Uragami, Proc. Natl. Acad. Sci. USA 2006, 103, 1190–1193;
- 131bT. Miyata, T. Hayashi, Y. Kuriu, T. Uragami, J. Mol. Recognit. 2012, 25, 336–343.