Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics
Manish Debnath
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorKhushnood Fatma
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorCorresponding Author
Prof. Jyotirmayee Dash
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorManish Debnath
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorKhushnood Fatma
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorCorresponding Author
Prof. Jyotirmayee Dash
School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032 India
Search for more papers by this authorGraphical Abstract
Non-canonical DNA structures: i-Motifs are four-stranded DNA structures formed by the folding of cytosine-rich sequences present in telomeres and gene promoters. Compared to complementary G-quadruplexes, i-motifs are less explored. This Minireview describes significant advances in chemically regulated i-motif-based functional nanostructures and small-molecule targeting of i-motifs for therapeutics.
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Conflict of interest
The authors declare no conflict of interest.
References
- 1M. L. Bochman, K. Paeschke, V. A. Zakian, Nat. Rev. Genet. 2012, 13, 770–780.
- 2K. Gehring, J.-L. Leroy, M. Guéron, Nature 1993, 363, 561–565.
- 3S. Burge, G. N. Parkinson, P. Hazel, A. K. Todd, S. Neidle, Nucleic Acids Res. 2006, 34, 5402–5415.
- 4M. Guéron, J.-L. Leroy, Curr. Opin. Struct. Biol. 2000, 10, 326–331.
- 5E. Y. N. Lam, D. Beraldi, D. Tannahill, S. Balasubramanian, Nat. Commun. 2013, 4, 1796.
- 6T. A. Brooks, S. Kendrick, L. Hurley, FEBS J. 2010, 277, 3459–3469.
- 7A. Siddiqui-Jain, C. L. Grand, D. J. Bearss, L. H. Hurley, Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598.
- 8S. Balasubramanian, L. H. Hurley, S. Neidle, Nat. Rev. Drug Discovery 2011, 10, 261.
- 9E. Ruggiero, S. N. Richter, Nucleic Acids Res. 2018, 46, 3270–3283.
- 10
- 10aM. Debnath, S. Ghosh, D. Panda, I. Bessi, H. Schwalbe, K. Bhattacharyya, J. Dash, Chem. Sci. 2016, 7, 3279–3285;
- 10bS. Neidle, Nat. Rev. Chem. 2017, 1, 0041.
- 11J. Abraham Punnoose, Y. Ma, Y. Li, M. Sakuma, S. Mandal, K. Nagasawa, H. Mao, J. Am. Chem. Soc. 2017, 139, 7476–7484.
- 12M. Debnath, R. Paul, D. Panda, J. Dash, ACS Synth. Biol. 2018, 7, 1456–1464.
- 13R. Hänsel-Hertsch, M. Di Antonio, S. Balasubramanian, Nat. Rev. Mol. Cell Biol. 2017, 18, 279–284.
- 14B. Maji, S. Bhattacharya, Chem. Commun. 2014, 50, 6422–6438.
- 15D. Panda, P. Saha, T. Das, J. Dash, Nat. Commun. 2017, 8, 16103.
- 16D. Panda, M. Debnath, S. Mandal, I. Bessi, H. Schwalbe, J. Dash, Sci. Rep. 2015, 5, 13183.
- 17T. Das, D. Panda, P. Saha, J. Dash, Bioconjugate Chem. 2018, 29, 2636–2645.
- 18D. Dutta, M. Debnath, D. Müller, R. Paul, T. Das, I. Bessi, H. Schwalbe, J. Dash, Nucleic Acids Res. 2018, 46, 5355–5365.
- 19A. Chauhan, R. Paul, M. Debnath, I. Bessi, S. Mandal, H. Schwalbe, J. Dash, J. Med. Chem. 2016, 59, 7275–7281.
- 20
- 20aT. Li, M. Famulok, J. Am. Chem. Soc. 2013, 135, 1593–1599;
- 20bY. Dong, Z. Yang, D. Liu, Acc. Chem. Res. 2014, 47, 1853–1860.
- 21A. Dembska, Anal. Chim. Acta 2016, 930, 1–12.
- 22J. J. Alba, A. Sadurní, R. Gargallo, Crit. Rev. Anal. Chem. 2016, 46, 443–454.
- 23A. Dembska, P. Bielecka, B. Juskowiak, Anal. Methods 2017, 9, 6092–6106.
- 24S. Surana, J. M. Bhat, S. P. Koushika, Y. Krishnan, Nat. Commun. 2011, 2, 340.
- 25S. Modi, C. Nizak, S. Surana, S. Halder, Y. Krishnan, Nat. Nanotechnol. 2013, 8, 459–467.
- 26T. Liedl, F. C. Simmel, Nano lett. 2005, 5, 1894–1898.
- 27D. Liu, S. Balasubramanian, Angew. Chem. Int. Ed. 2003, 42, 5734–5736; Angew. Chem. 2003, 115, 5912–5914.
- 28D. Liu, A. Bruckbauer, C. Abell, S. Balasubramanian, D.-J. Kang, D. Klenerman, D. Zhou, J. Am. Chem. Soc. 2006, 128, 2067–2071.
- 29F. C. Simmel, W. U. Dittmer, Small 2005, 1, 284–299.
- 30Y. Krishnan, F. C. Simmel, Angew. Chem. Int. Ed. 2011, 50, 3124–3156; Angew. Chem. 2011, 123, 3180–3215.
- 31W. Shu, D. Liu, M. Watari, C. K. Riener, T. Strunz, M. E. Welland, S. Balasubramanian, R. A. McKendry, J. Am. Chem. Soc. 2005, 127, 17054–17060.
- 32F. Xia, W. Guo, Y. Mao, X. Hou, J. Xue, H. Xia, L. Wang, Y. Song, H. Ji, Q. Ouyang, J. Am. Chem. Soc. 2008, 130, 8345–8350.
- 33E. Cheng, Y. Xing, P. Chen, Y. Yang, Y. Sun, D. Zhou, L. Xu, Q. Fan, D. Liu, Angew. Chem. Int. Ed. 2009, 48, 7660–7663; Angew. Chem. 2009, 121, 7796–7799.
- 34N. C. Seeman, H. F. Sleiman, Nat. Rev. Mater. 2017, 3, 17068.
- 35C. Teller, I. Willner, Curr. Opin. Biotechnol. 2010, 21, 376–391.
- 36H. Mei, S. Budow, F. Seela, Biomacromolecules 2012, 13, 4196–4204.
- 37S. He, C. Richert, Chem. Eur. J. 2018, 24, 4562–4572.
- 38A. Protopopova, V. Tsvetkov, A. Varizhuk, N. Barinov, V. Podgorsky, D. Klinov, G. Pozmogova, Phys. Chem. Chem. Phys. 2018, 20, 3543–3553.
- 39L. Shi, P. Peng, Y. Du, T. Li, Nucleic acids res. 2017, 45, 4306–4314.
- 40J. Zhu, Y. Kim, H. Lin, S. Wang, C. A. Mirkin, J. Am. Chem. Soc. 2018, 140, 5061–5064.
- 41J. S. Kahn, L. Freage, N. Enkin, M. A. A. Garcia, I. Willner, Adv. Mater. 2017, 29, 1602782.
- 42L. Heinen, A. Walther, Chem. Sci. 2017, 8, 4100–4107.
- 43C. Lu, Z. Huang, B. Liu, Y. Liu, Y. Ying, J. Liu, Angew. Chem. Int. Ed. 2017, 56, 6208–6212; Angew. Chem. 2017, 129, 6304–6308.
- 44J. Huang, L. Ying, X. Yang, Y. Yang, K. Quan, H. Wang, N. Xie, M. Ou, Q. Zhou, K. Wang, Anal. Chem. 2015, 87, 8724–8731.
- 45W. Ma, L. a. Yan, X. He, T. Qing, Y. Lei, Z. Qiao, D. He, K. Huang, K. Wang, Anal. Chem. 2018, 90, 1889–1896.
- 46L. Ying, N. Xie, Y. Yang, X. Yang, Q. Zhou, B. Yin, J. Huang, K. Wang, Chem. Commun. 2016, 52, 7818–7821.
- 47J. Wang, R. Fang, J. Hou, H. Zhang, Y. Tian, H. Wang, L. Jiang, ACS Nano 2017, 11, 3022–3029.
- 48L. Zhu, J. Zhou, G. Xu, C. Li, P. Ling, B. Liu, H. Ju, J. Lei, Chem. Sci. 2018, 9, 2559–2566.
- 49B. Xu, X. Wu, E. K. Yeow, F. Shao, Chem. Commun. 2014, 50, 6402–6405.
- 50L. Li, Y. Jiang, C. Cui, Y. Yang, P. Zhang, K. Stewart, X. Pan, X. Li, L. Yang, L. Qiu, J. Am. Chem. Soc. 2018, 140, 13335–13339.
- 51W. Xu, Y. Huang, H. Zhao, P. Li, G. Liu, J. Li, C. Zhu, L. Tian, Chem. Eur. J. 2017, 23, 18276–18281.
- 52S. Tanaka, S. Yukami, K. Fukushima, K. Wakabayashi, Y. Ohya, A. Kuzuya, ACS Macro Lett. 2018, 7, 295–299.
- 53J. S. Kahn, Y. Hu, I. Willner, Acc. Chem. Res. 2017, 50, 680–690.
- 54W. Guo, C. H. Lu, R. Orbach, F. Wang, X. J. Qi, A. Cecconello, D. Seliktar, I. Willner, Adv. Mater. 2015, 27, 73–78.
- 55Y. Hu, W. Guo, J. S. Kahn, M. A. Aleman-Garcia, I. Willner, Angew. Chem. Int. Ed. 2016, 55, 4210–4214; Angew. Chem. 2016, 128, 4282–4286.
- 56X. Yu, Y. Hu, J. S. Kahn, A. Cecconello, I. Willner, Chem. Eur. J. 2016, 22, 14504–14507.
- 57S. R. Deshpande, R. Hammink, F. H. Nelissen, A. E. Rowan, H. A. Heus, Biomacromolecules 2017, 18, 3310–3317.
- 58F. Huang, W.-C. Liao, Y. S. Sohn, R. Nechushtai, C.-H. Lu, I. Willner, J. Am. Chem. Soc. 2016, 138, 8936–8945.
- 59W.-C. Liao, S. Lilienthal, J. S. Kahn, M. Riutin, Y. S. Sohn, R. Nechushtai, I. Willner, Chem. Sci. 2017, 8, 3362–3373.
- 60H. Park, J. Kim, S. Jung, W. J. Kim, Adv. Funct. Mater. 2018, 28, 1705416.
- 61D. Jang, Y. M. Lee, J. Lee, J. Doh, W. J. Kim, Sci. Rep. 2017, 7, 40739.
- 62J. Kim, C. Jo, W. G. Lim, S. Jung, Y. M. Lee, J. Lim, H. Lee, J. Lee, W. J. Kim, Adv. Mater. 2018, 30, 1707557.
- 63J. Lu, J. Sun, F. Li, J. Wang, J. Liu, D. Kim, C. Fan, T. Hyeon, D. Ling, J. Am. Chem. Soc. 2018, 140, 10071–10074.
- 64N. Esmaili, J. L. Leroy, Nucleic Acids Res. 2005, 33, 213–224.
- 65M. Garavís, M. Méndez-Lago, V. Gabelica, S. L. Whitehead, C. González, A. Villasante, Sci. Rep. 2015, 5, 13307.
- 66H. A. Day, P. Pavlou, Z. A. Waller, Bioorg. Med. Chem. 2014, 22, 4407–4418.
- 67K. S. Jin, S. R. Shin, B. Ahn, Y. Rho, S. J. Kim, M. Ree, J. Phys. Chem. B 2009, 113, 1852–1856.
- 68J. Choi, S. Kim, T. Tachikawa, M. Fujitsuka, T. Majima, J. Am. Chem. Soc. 2011, 133, 16146–16153.
- 69A. L. Lieblein, J. Buck, K. Schlepckow, B. Fürtig, H. Schwalbe, Angew. Chem. Int. Ed. 2012, 51, 250–253; Angew. Chem. 2012, 124, 255–259.
- 70J. Zhou, C. Wei, G. Jia, X. Wang, Z. Feng, C. Li, Mol. BioSyst. 2010, 6, 580–586.
- 71A. Rajendran, S. I. Nakano, N. Sugimoto, Chem. Commun. 2010, 46, 1299–1301.
- 72D. Sun, L. H. Hurley, J. Med. Chem. 2009, 52, 2863–2874.
- 73H. Abou Assi, M. Garavís, C. González, M. J. Damha, Nucleic Acids Res. 2018, 46, 8038–8056.
- 74H. Abou Assi, R. El-Khoury, C. González, M. J. Damha, Nucleic Acids Res. 2017, 45, 11535–11546.
- 75H. A. Assi, R. W. Harkness, N. Martin-Pintado, C. J. Wilds, R. Campos-Olivas, A. K. Mittermaier, C. González, M. J. Damha, Nucleic Acids Res. 2016, 44, 4998–5009.
- 76B. Xu, G. Devi, F. Shao, Org. Biomol. Chem. 2015, 13, 5646–5651.
- 77A. Breiling, F. Lyko, Epigenetics Chromatin 2015, 8, 24.
- 78J. Yang, R. Guo, H. Wang, X. Ye, Z. Zhou, J. Dan, H. Wang, P. Gong, W. Deng, Y. Yin, S. Mao, L. Wang, J. Ding, J. Li, D. L. Keefe, M. M. Dawlaty, J. Wang, G. Xu, L. Liu, Cell Rep. 2016, 15, 1809–1821.
- 79Z. Dvořáková, D. Renčiuk, I. Kejnovská, P. Školáková, K. Bednářová, J. Sagi, M. Vorlíčková, Nucleic Acids Res. 2018, 46, 1624–1634.
- 80E. P. Wright, K. Lamparska, S. S. Smith, Z. A. Waller, Biochemistry 2017, 56, 4879–4883.
- 81S. Pérez-Rentero, R. Gargallo, C. González, R. Eritja, RSC Adv. 2015, 5, 63278–63281.
- 82
- 82aB. Mir, X. Solés, C. González, N. Escaja, Sci. Rep. 2017, 7, 2772;
- 82bH. Abou Assi, Y. C. Lin, I. Serrano, C. González, M. J. Damha, Chem. Eur. J. 2018, 24, 471–477.
- 83V. B. Tsvetkov, T. S. Zatsepin, E. S. Belyaev, Y. I. Kostyukevich, G. V. Shpakovski, V. V. Podgorsky, G. E. Pozmogova, A. M. Varizhuk, A. V. Aralov, Nucleic Acids Res. 2018, 46, 2751–2764.
- 84
- 84aS. P. Gurung, C. Schwarz, J. P. Hall, C. J. Cardin, J. A. Brazier, Chem. Commun. 2015, 51, 5630–5632;
- 84bS. M. Reilly, R. K. Morgan, T. A. Brooks, R. M. Wadkins, Biochemistry 2015, 54, 1364–1370.
- 85S. Benabou, M. Garavís, S. Lyonnais, R. Eritja, C. González, R. Gargallo, Phys. Chem. Chem. Phys. 2016, 18, 7997–8004.
- 86T. Nguyen, C. Fraire, R. D. Sheardy, J. Phys. Chem. B 2017, 121, 7872–7877.
- 87
- 87aH. A. Day, C. Huguin, Z. A. Waller, Chem. Commun. 2013, 49, 7696–7698;
- 87bM. A. S. Abdelhamid, L. Fábián, C. J. MacDonald, M. R. Cheesman, A. J. Gates, Z. A. E. Waller, Nucleic Acids Res. 2018, 46, 5886–5893.
- 88S. Saxena, S. Joshi, J. Shankaraswamy, S. Tyagi, S. Kukreti, Biopolymers 2017, 107, e 23018.
- 89H. Tateishi-Karimata, M. Nakano, S. Pramanik, S. Tanaka, N. Sugimoto, Chem. Commun. 2015, 51, 6909–6912.
- 90E. P. Wright, J. L. Huppert, Z. A. Waller, Nucleic Acids Res. 2017, 45, 2951–2959.
- 91A. M. Fleming, Y. Ding, R. A. Rogers, J. Zhu, J. Zhu, A. D. Burton, C. B. Carlisle, C. J. Burrows, J. Am. Chem. Soc. 2017, 139, 4682–4689.
- 92A. M. Fleming, K. M. Stewart, G. M. Eyring, T. E. Ball, C. J. Burrows, Org. Biomol. Chem. 2018, 16, 4537–4546.
- 93R. A. Rogers, A. M. Fleming, C. J. Burrows, ACS Omega 2018, 3, 9630–9635.
- 94R. A. Rogers, A. M. Fleming, C. J. Burrows, Biophys. J. 2018, 114, 1804–1815.
- 95B. Mir, I. Serrano, D. Buitrago, M. Orozco, N. Escaja, C. González, J. Am. Chem. Soc. 2017, 139, 13985–13988.
- 96A. Kovanda, M. Zalar, P. Šket, J. Plavec, B. Rogelj, Sci. Rep. 2015, 5, 17944.
- 97E. P. Wright, H. A. Day, A. M. Ibrahim, J. Kumar, L. J. Boswell, C. Huguin, C. E. Stevenson, K. Pors, Z. A. Waller, Sci. Rep. 2016, 6, 39456.
- 98R. V. Brown, T. Wang, V. R. Chappeta, G. Wu, B. Onel, R. Chawla, H. Quijada, S. M. Camp, E. T. Chiang, Q. R. Lassiter, J. Am. Chem. Soc. 2017, 139, 7456–7475.
- 99S. Kendrick, Y. Akiyama, S. M. Hecht, L. H. Hurley, J. Am. Chem. Soc. 2009, 131, 17667–17676.
- 100C. E. Kaiser, N. A. Van Ert, P. Agrawal, R. Chawla, D. Yang, L. H. Hurley, J. Am. Chem. Soc. 2017, 139, 8522–8536.
- 101K. Niu, X. Zhang, H. Deng, F. Wu, Y. Ren, H. Xiang, S. Zheng, L. Liu, L. Huang, B. Zeng, Nucleic Acids Res. 2018, 46, 1710–1723.
- 102S. Dhakal, J. D. Schonhoft, D. Koirala, Z. Yu, S. Basu, H. Mao, J. Am. Chem. Soc. 2010, 132, 8991–8997.
- 103D. J. Uribe, K. Guo, Y.-J. Shin, D. Sun, Biochemistry 2011, 50, 3796–3806.
- 104K. Guo, A. Pourpak, K. Beetz-Rogers, V. Gokhale, D. Sun, L. H. Hurley, J. Am. Chem. Soc. 2007, 129, 10220–10228.
- 105J. A. Brazier, A. Shah, G. D. Brown, Chem. Commun. 2012, 48, 10739–10741.
- 106S. N. Journey, S. Alden, W. Hewitt, M. Peach, M. Nicklaus, J. S. Schneekloth, MedChemComm. 2018, 9, 2000–2007.
- 107S. Dzatko, M. Krafcikova, R. Hänsel-Hertsch, T. Fessl, R. Fiala, T. Loja, D. Krafcik, J. L. Mergny, S. Foldynova-Trantirkova, L. Trantirek, Angew. Chem. Int. Ed. 2018, 57, 2165–2169; Angew. Chem. 2018, 130, 2187–2191.
- 108M. Zeraati, D. B. Langley, P. Schofield, A. L. Moye, R. Rouet, W. E. Hughes, T. M. Bryan, M. E. Dinger, D. Christ, Nat. Chem. 2018, 10, 631.
- 109W. Lu, Y. Zhang, D. Liu, Z. Songyang, M. Wan, Exp. Cell Res. 2013, 319, 133–141.
- 110J. L. Osterhage, K. L. Friedman, J. Biol. Chem. 2009, 284, 16061–16065.
- 111A. T. Phan, J.-L. Leroy, J. Biomol. Struct. Dyn. 2000, 17, 245–251.
- 112Y. Chen, K. Qu, C. Zhao, L. Wu, J. Ren, J. Wang, X. Qu, Nat. Commun. 2012, 3, 1074.
- 113P. Školáková, S. Foldynová-Trantírková, K. Bednářová, R. Fiala, M. Vorlíčková, L. Trantírek, Nucleic Acids Res. 2015, 43, 4733–4745.
- 114E. F. Michelotti, G. A. Michelotti, A. I. Aronsohn, D. Levens, Mol. Cell. Biol. 1996, 16, 2350–2360.
- 115T. Tomonaga, D. Levens, Proc. Natl. Acad. Sci. USA 1996, 93, 5830–5835.
- 116G. Miglietta, S. Cogoi, E. B. Pedersen, L. E. Xodo, Sci. Rep. 2015, 5, 18097.
- 117S. Dhakal, Z. Yu, R. Konik, Y. Cui, D. Koirala, H. Mao, Biophys. J. 2012, 102, 2575–2584.
- 118Y. Cui, D. Kong, C. Ghimire, C. Xu, H. Mao, Biochemistry 2016, 55, 2291–2299.
- 119
- 119aO. Y. Fedoroff, A. Rangan, V. V. Chemeris, L. H. Hurley, Biochemistry 2000, 39, 15083–15090;
- 119bT. Qin, K. Liu, D. Song, C. Yang, H. Su, Chem. Asian J. 2017, 12, 1578–1586.
- 120P. Alberti, J. Ren, M. P. Teulade-Fichou, L. Guittat, J.-F. Riou, J. B. Chaires, C. Hélène, J.-P. Vigneron, J.-M. Lehn, J.-L. Mergny, J. Biomol. Struct. Dyn. 2001, 19, 505–513.
- 121L. Wang, Y. Wu, T. Chen, C. Wei, Int. J. Biol. Macromol. 2013, 52, 1–8.
- 122L. Xu, S. Hong, N. Sun, K. Wang, L. Zhou, L. Ji, R. Pei, Chem. Commun. 2016, 52, 179–182.
- 123
- 123aL. Xue, N. Ranjan, D. P. Arya, Biochemistry 2011, 50, 2838–2849;
- 123bQ. Sheng, J. C. Neaverson, T. Mahmoud, C. E. Stevenson, S. E. Matthews, Z. A. Waller, Org. Biomol. Chem. 2017, 15, 5669–5673.
- 124D.-L. Ma, M. H.-T. Kwan, D. S.-H. Chan, P. Lee, H. Yang, V. P.-Y. Ma, L.-P. Bai, Z.-H. Jiang, C.-H. Leung, Analyst 2011, 136, 2692–2696.
- 125I. J. Lee, S. P. Patil, K. Fhayli, S. Alsaiari, N. M. Khashab, Chem. Commun. 2015, 51, 3747–3749.
- 126L. Lu, M. Wang, L.-J. Liu, C.-Y. Wong, C.-H. Leung, D.-L. Ma, Chem. Commun. 2015, 51, 9953–9956.
- 127G. Jiang, L. Xu, K. Wang, X. Chen, J. Wang, W. Cao, R. Pei, Anal. Methods 2017, 9, 1585–1588.
- 128L. Xu, J. Wang, N. Sun, M. Liu, Y. Cao, Z. Wang, R. Pei, Chem. Commun. 2016, 52, 14330–14333.
- 129S. Satpathi, K. Das, P. Hazra, Chem. Commun. 2018, 54, 7054–7057.
- 130A. Pagano, N. Iaccarino, M. A. Abdelhamid, D. Brancaccio, E. U. Garzarella, A. Di Porzio, E. Novellino, Z. A. Waller, B. Pagano, J. Amato, A. Randazzo, Front. Chem. 2018, 6, 281.
- 131M. A. S. Abdelhamid, A. J. Gates, Z. A. E. Waller, Biochemistry 2018, https://doi.org/10.1021/acs.biochem.8b00968.
- 132S. Sedghi Masoud, Y. Yamaoki, Y. Ma, A. Marchand, F. R. Winnerdy, V. Gabelica, A. T. Phan, M. Katahira, K. Nagasawa, ChemBioChem 2018, 19, 2268–2272.
- 133S. Kendrick, H.-J. Kang, M. P. Alam, M. M. Madathil, P. Agrawal, V. Gokhale, D. Yang, S. M. Hecht, L. H. Hurley, J. Am. Chem. Soc. 2014, 136, 4161–4171.
- 134M. H. Kaulage, S. Bhattacharya, K. Muniyappa, ChemBioChem 2018, 19, 1078–1087.
- 135B. Shu, J. Cao, G. Kuang, J. Qiu, M. Zhang, Y. Zhang, M. Wang, X. Li, S. Kang, T.-M. Ou, Chem. Commun. 2018, 54, 2036–2039.
- 136C. Luo, Y. Li, L. Guo, F. Zhang, H. Liu, J. Zhang, J. Zheng, J. Zhang, S. Guo, Adv. Healthcare Mater. 2017, 6, 1700328.
- 137M. Debnath, S. Ghosh, A. Chauhan, R. Paul, K. Bhattacharyya, J. Dash, Chem. Sci. 2017, 8, 7448–7456.
- 138S. Kendrick, A. Muranyi, V. Gokhale, L. H. Hurley, L. M. Rimsza, J. Med. Chem. 2017, 60, 6587–6597.
- 139C. Sutherland, Y. Cui, H. Mao, L. H. Hurley, J. Am. Chem. Soc. 2016, 138, 14138–14151.
- 140X. Bai, P. Talukder, S. M. Daskalova, B. Roy, S. Chen, Z. Li, L. M. Dedkova, S. M. Hecht, J. Am. Chem. Soc. 2017, 139, 4611–4614.
- 141L. Lannes, P. Young, C. Richter, N. Morgner, H. Schwalbe, ChemBioChem 2017, 18, 2033–2044.