Advanced Photosensitizer Activation Strategies for Smarter Photodynamic Therapy Beacons
Benjamin M. Luby
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorConnor D. Walsh
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang Zheng
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorBenjamin M. Luby
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorConnor D. Walsh
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorCorresponding Author
Prof. Dr. Gang Zheng
Princess Margaret Cancer Centre and Techna Institute, University Health Network, 101 College St., Toronto, ON, Canada
Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Search for more papers by this authorGraphical Abstract
Extreme specificity: Photodynamic therapy beacons are phototoxic drugs that are only cytotoxic upon tissue accumulation, analyte-driven activation, and external illumination. Moreover, their cytotoxic state simultaneously provides optical feedback to monitor treatment. In this Minireview, recent developments on how these beacons are becoming smarter still are discussed.
Abstract
Photodynamic therapy (PDT) is a clinical treatment in which a light-absorbing drug called a photosensitizer (PS) is combined with light and molecular oxygen to generate cytotoxic singlet oxygen. PDT provides additional tissue selectivity compared to conventional chemotherapy as singlet oxygen is generated only in areas in which PS accumulates and that are simultaneously illuminated by a light source with sufficient irradiance and dose. Early PDT beacons built on this concept by adding an analyte-responsive element that simultaneously turns on PDT and fluorescence, providing both an additional layer of selectivity and real-time feedback of the PS′s activation state. More recent PDT beacons have expanded this idea, with new methods now available for sensing analytes, generating singlet oxygen, and reporting treatment status. In this Minireview, we consider developments in advanced activation strategies implemented in therapeutic and theranostic beacons.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aS. K. Schwartz, K. Absolon, H. Vermund, Univ. Minn. Med. Bull 1955, 27, 7–8;
- 1bR. L. Lipson, E. J. Baldes, A. M. Olsen, J. Natl. Cancer Inst. 1961, 26, 1–11.
- 2T. J. Dougherty, J. Clin. Laser Med. Surgery 1996, 14, 219–221.
- 3Z. Huang, Technol. Cancer Res. Treat. 2005, 4, 283–293.
- 4T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan, Q. Peng, J. Natl. Cancer Inst. 1998, 90, 889–905.
- 5M. Johan, B. Kristian, Photochem. Photobiol. 1991, 53, 549–553.
- 6B. C. Wilson, M. S. Patterson, Phys. Med. Biol. 2008, 53, R 61–R109.
- 7A. B. Ormond, H. S. Freeman, Materials 2013, 6, 817–840.
- 8P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson, J. Golab, Ca-Cancer J. Clin. 2011, 61, 250–281.
- 9J. F. Lovell, J. Chen, M. T. Jarvi, W. G. Cao, A. D. Allen, Y. Liu, T. T. Tidwell, B. C. Wilson, G. Zheng, J. Phys. Chem. B 2009, 113, 3203–3211.
- 10J. F. Lovell, T. W. Liu, J. Chen, G. Zheng, Chem. Rev. 2010, 110, 2839–2857.
- 11J. Chen, T. W. Liu, P. C. Lo, B. C. Wilson, G. Zheng, Bioconjugate Chem. 2009, 20, 1836–1842.
- 12J. Chen, J. F. Lovell, P.-C. Lo, K. Stefflova, M. Niedre, B. C. Wilson, G. Zheng, Photochem. Photobiol. Sci. 2008, 7, 775–781.
- 13B. M. Luby, D. M. Charron, C. M. MacLaughlin, G. Zheng, Adv. Drug Delivery Rev. 2017, 113, 97–121.
- 14X. Gu, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Biomaterials 2017, 146, 115–135.
- 15C. J. Zhang, Q. Hu, G. Feng, R. Zhang, Y. Yuan, X. Lu, B. Liu, Chem. Sci. 2015, 6, 4580–4586.
- 16K. Y. Choi, M. Swierczewska, S. Lee, X. Chen, Theranostics 2012, 2, 156–178.
- 17J. Chen, K. Stefflova, M. J. Niedre, B. C. Wilson, B. Chance, J. D. Glickson, G. Zheng, J. Am. Chem. Soc. 2004, 126, 11450–11451.
- 18
- 18aK. Stefflova, J. Chen, D. Marotta, H. Li, G. Zheng, J. Med. Chem. 2006, 49, 3850–3856;
- 18bK. Stefflova, J. Chen, H. Li, G. Zheng, Mol. Imaging 2006, 5, 520–532;
- 18cP. C. Lo, J. Chen, K. Stefflova, M. S. Warren, R. Navab, B. Bandarchi, S. Mullins, M. Tsao, J. D. Cheng, G. Zheng, J. Med. Chem. 2009, 52, 358–368.
- 19G. Zheng, J. Chen, K. Stefflova, M. Jarvi, H. Li, B. C. Wilson, Proc. Natl. Acad. Sci. USA 2007, 104, 8989–8994.
- 20
- 20aT. W. Liu, M. K. Akens, J. Chen, L. Wise-Milestone, B. C. Wilson, G. Zheng, Bioconjugate Chem. 2011, 22, 1021–1030;
- 20bT. W. Liu, M. K. Akens, J. Chen, B. C. Wilson, G. Zheng, Photochem. Photobiol. Sci. 2016, 15, 375–381.
- 21D. Gabriel, N. Lange, V. Chobaz-Peclat, M. F. Zuluaga, R. Gurny, H. van den Bergh, N. Busso, J. Controlled Release 2012, 163, 178–186.
- 22
- 22aA. Stallivieri, L. Colombeau, J. Devy, N. Etique, C. Chaintreuil, B. Myrzakhmetov, M. Achard, F. Baros, P. Arnoux, R. Vanderesse, C. Frochot, Bioorg. Med. Chem. 2018, 26, 688–702;
- 22bM. Göksel, M. Durmuş, D. Atilla, Photochem. Photobiol. 2016, 15, 1318–1329.
- 23Y. Ben-Nun, E. Merquiol, A. Brandis, B. Turk, A. Scherz, G. Blum, Theranostics 2015, 5, 847–862.
- 24
- 24aY. Choi, R. Weissleder, C. H. Tung, Cancer Res. 2006, 66, 7225–7229;
- 24bN. L. Krinick, Y. Sun, D. Joyner, J. D. Spikes, R. Straight, J. Kopecek, J. Biomater. Sci. Polym. Ed. 1994, 5, 303–324.
- 25S. M. Shon, Y. Choi, J. Y. Kim, D. K. Lee, J. Y. Park, D. Schellingerhout, D. E. Kim, Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1360–1365.
- 26
- 26aD. Gabriel, N. Busso, A. So, H. van den Bergh, R. Gurny, N. Lange, J. Controlled Release 2009, 138, 225–234;
- 26bM. F. Zuluaga, D. Gabriel, N. Lange, Mol. Pharm. 2012, 9, 1570–1579;
- 26cM. F. Zuluaga, N. Sekkat, D. Gabriel, H. van den Bergh, N. Lange, Mol. Cancer Therapeutics 2013, 12, 306–313.
- 27Y. Yuan, C. J. Zhang, M. Gao, R. Zhang, B. Z. Tang, B. Liu, Angew. Chem. Int. Ed. 2015, 54, 1780–1786; Angew. Chem. 2015, 127, 1800–1806.
- 28M. R. Ke, S. F. Chen, X. H. Peng, Q. F. Zheng, B. Y. Zheng, C. K. Yeh, J. D. Huang, Eur. J. Med. Chem. 2017, 127, 200–209.
- 29
- 29aJ. Chen, K. Stefflova, M. Warren, J. Bu, B. Wilson, G. Zheng, in Genetically Engineered and Optical Probes for Biomedical Applications IV, Proceedings of the SPIE Vol. 6449, International Society for Optics and Photonics, 2007, 644906;
- 29bP. S. Low, W. A. Henne, D. D. Doorneweerd, Acc. Chem. Res. 2008, 41, 120–129.
- 30J. Kim, C. H. Tung, Y. Choi, Chem. Commun. 2014, 50, 10600–10603.
- 31T. W. Liu, J. Chen, L. Burgess, B. C. Wilson, G. Zheng, L. Zhan, W. K. Liu, B. Y. Ha, J. Phys. Chem. B 2015, 119, 44–53.
- 32N. Li, H. Yang, W. Pan, W. Diao, B. Tang, Chem. Commun. 2014, 50, 7473–7476.
- 33D. Wu, G. Song, Z. Li, T. Zhang, W. Wei, M. Chen, X. He, N. Ma, Chem. Sci. 2015, 6, 3839–3844.
- 34Y. Shen, Q. Tian, Y. Sun, J. J. Xu, D. Ye, H. Y. Chen, Anal. Chem. 2017, 89, 13610–13617.
- 35M. You, L. Peng, N. Shao, L. Zhang, L. Qiu, C. Cui, W. Tan, J. Am. Chem. Soc. 2014, 136, 1256–1259.
- 36
- 36aL. Li, J. Feng, H. Liu, Q. Li, L. Tong, B. Tang, Chem. Sci. 2016, 7, 1940–1945;
- 36bH. M. Choi, J. Y. Chang, A. Trinh le, J. E. Padilla, S. E. Fraser, N. A. Pierce, Nat. Biotechnol. 2010, 28, 1208–1212.
- 37Z. Cheglakov, T. M. Cronin, C. He, Y. Weizmann, J. Am. Chem. Soc. 2015, 137, 6116–6119.
- 38B. M. Luby, G. Zheng, Angew. Chem. Int. Ed. 2017, 56, 13704–13708; Angew. Chem. 2017, 129, 13892–13896.
- 39D. Manoil, N. Lange, S. Bouillaguet, J. Photochem. Photobiol. B 2018, 179, 84–90.
- 40X. Zheng, U. W. Sallum, S. Verma, H. Athar, C. L. Evans, T. Hasan, Angew. Chem. Int. Ed. 2009, 48, 2148–2151; Angew. Chem. 2009, 121, 2182–2185.
- 41X. J. Fu, Y. Q. Zhu, Y. B. Peng, Y. S. Chen, Y. P. Hu, H. X. Lu, W. R. Yu, Y. Fang, J. Z. Du, M. Yao, J. Photochem. Photobiol. B 2014, 136, 72–80.
- 42
- 42aY. Ichikawa, M. Kamiya, F. Obata, M. Miura, T. Terai, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, Y. Urano, Angew. Chem. Int. Ed. 2014, 53, 6772–6775; Angew. Chem. 2014, 126, 6890–6893;
- 42bM. Chiba, Y. Ichikawa, M. Kamiya, T. Komatsu, T. Ueno, K. Hanaoka, T. Nagano, N. Lange, Y. Urano, Angew. Chem. Int. Ed. 2017, 56, 10418–10422; Angew. Chem. 2017, 129, 10554–10558.
- 43Y. Kuriki, M. Kamiya, H. Kubo, T. Komatsu, T. Ueno, R. Tachibana, K. Hayashi, K. Hanaoka, S. Yamashita, T. Ishizawa, N. Kokudo, Y. Urano, J. Am. Chem. Soc. 2018, 140, 1767–1773.
- 44C. Perotti, A. Casas, H. Fukuda, P. Sacca, A. Batlle, British J. Cancer 2002, 87, 790–795.
- 45M. Hefti, Martin, H. M. Mehdorn, I. Albert, Ina, Dorner, L. Dörner, Current Medical Imaging Reviews 2010, 6, 254–258.
- 46A. Babič, V. Herceg, I. Ateb, E. Allémann, N. Lange, J. Controlled Release 2016, 235, 155–164.
- 47V. Herceg, N. Lange, E. Allemann, A. Babic, J. Photochem. Photobiol. B 2017, 171, 34–42.
- 48A. Turksoy, D. Yildiz, E. Akkaya, Coord. Chem. Rev. 2017, 379, 47-64.
- 49J. Gao, J. Li, W. C. Geng, F. Y. Chen, X. Duan, Z. Zheng, D. Ding, D. S. Guo, J. Am. Chem. Soc. 2018, 140, 4945–4953.
- 50W. Piao, K. Hanaoka, T. Fujisawa, S. Takeuchi, T. Komatsu, T. Ueno, T. Terai, T. Tahara, T. Nagano, Y. Urano, J. Am. Chem. Soc. 2017, 139, 13713–13719.
- 51W. Hu, M. Xie, H. Zhao, Y. Tang, S. Yao, T. He, C. Ye, Q. Wang, X. Lu, W. Huang, Q. Fan, Chem. Sci. 2018, 9, 999–1005.
- 52H. W. Liu, X. X. Hu, K. Li, Y. Liu, Q. Rong, L. Zhu, L. Yuan, F. L. Qu, X. B. Zhang, W. Tan, Chem. Sci. 2017, 8, 7689–7695.
- 53J. F. Lovell, M. W. Chan, Q. Qi, J. Chen, G. Zheng, J. Am. Chem. Soc. 2011, 133, 18580–18582.
- 54S. Erbas-Cakmak, E. U. Akkaya, Org. Lett. 2014, 16, 2946–2949.
- 55A. M. Durantini, L. E. Greene, R. Lincoln, S. R. Martinez, G. Cosa, J. Am. Chem. Soc. 2016, 138, 1215–1225.
- 56Y. Yuan, C.-J. Zhang, S. Xu, B. Liu, Chem. Sci. 2016, 7, 1862–1866.
- 57
- 57aM. Bio, P. Rajaputra, G. Nkepang, Y. You, J. Med. Chem. 2014, 57, 3401–3409;
- 57bH. Y. Chen, P. Thapa, M. Li, R. Karki, M. Bio, P. Rajaputra, G. Nkepang, S. Woo, Y. You, Anal. Chem. 2017, 2, 6349–6360;
- 57cP. Thapa, M. Li, M. Bio, P. Rajaputra, G. Nkepang, Y. Sun, S. Woo, Y. You, J. Med. Chem. 2016, 59, 3204–3214.
- 58I. S. Turan, G. Gunaydin, S. Ayan, E. U. Akkaya, Nat. Commun. 2018, 9, 805.
- 59M. J. Whitley, D. M. Cardona, A. L. Lazarides, I. Spasojevic, J. M. Ferrer, J. Cahill, C. L. Lee, M. Snuderl, D. G. Blazer 3rd, E. S. Hwang, R. A. Greenup, P. J. Mosca, J. K. Mito, K. C. Cuneo, N. A. Larrier, E. K. O'Reilly, R. F. Riedel, W. C. Eward, D. B. Strasfeld, D. Fukumura, R. K. Jain, W. D. Lee, L. G. Griffith, M. G. Bawendi, D. G. Kirsch, B. E. Brigman, Sci. Translational Med. 2016, 8, 320ra4.
- 60B. W. Pogue, J. T. Elliott, S. C. Kanick, S. C. Davis, K. S. Samkoe, E. V. Maytin, S. P. Pereira, T. Hasan, Phys. Med. Biol. 2016, 61, R 57–R89.
- 61D. Mao, F. Hu, Kenry, S. Ji, W. Wu, D. Ding, D. Kong, B. Liu, Adv. Mater. 2018, 30, 1706831.
Citing Literature
February 25, 2019
Pages 2558-2569