B(C6F5)3-Catalyzed Selective Chlorination of Hydrosilanes
Karina Chulsky
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
Search for more papers by this authorCorresponding Author
Dr. Roman Dobrovetsky
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
Search for more papers by this authorKarina Chulsky
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
Search for more papers by this authorCorresponding Author
Dr. Roman Dobrovetsky
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978 Israel
Search for more papers by this authorGraphical Abstract
Cl-early a winning combination: Hydrosilanes underwent selective chlorination upon treatment with HCl in the presence of a catalytic amount of B(C6F5)3 with the liberation of H2 (see scheme). For the chlorination of di- and trihydrosilanes, the adduct Et2O⋅B(C6F5)3 was found to be a more selective catalyst.
Abstract
The chlorination of Si−H bonds often requires stoichiometric amounts of metal salts in conjunction with hazardous reagents, such as tin chlorides, Cl2, and CCl4. The catalytic chlorination of silanes often involves the use of expensive transition-metal catalysts. By a new simple, selective, and highly efficient catalytic metal-free method for the chlorination of Si−H bonds, mono-, di-, and trihydrosilanes were selectively chlorinated in the presence of a catalytic amount of B(C6F5)3 or Et2O⋅B(C6F5)3 and HCl with the release of H2 as a by-product. The hydrides in di- and trihydrosilanes could be selectively chlorinated by HCl in a stepwise manner when Et2O⋅B(C6F5)3 was used as the catalyst. A mechanism is proposed for these catalytic chlorination reactions on the basis of competition experiments and density functional theory (DFT) calculations.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201700324-sup-0001-misc_information.pdf2.6 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2010, 49, 46–76; Angew. Chem. 2010, 122, 50–81;
- 1bD. W. Stephan, Org. Biomol. Chem. 2012, 10, 5740–5746;
- 1cD. W. Stephan, Frustrated Lewis Pairs I: Uncovering and Understanding (Ed.: ), Springer, Berlin, 2013;
- 1dD. W. Stephan, G. Erker, Chem. Sci. 2014, 5, 2625–2641;
- 1eD. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400–6441; Angew. Chem. 2015, 127, 6498–6541;
- 1fD. W. Stephan, Acc. Chem. Res. 2015, 48, 306–316.
- 2
- 2aL. J. Hounjet, C. Bannwarth, C. N. Garon, C. B. Caputo, S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2013, 52, 7492–7495; Angew. Chem. 2013, 125, 7640–7643.
- 3
- 3aD. J. Scott, M. J. Fuchter, A. E. Ashley, J. Am. Chem. Soc. 2014, 136, 15813–15816;
- 3bT. Mahdi, D. W. Stephan, J. Am. Chem. Soc. 2014, 136, 15809–15812.
- 4
- 4aD. J. Parks, W. E. Piers, J. Am. Chem. Soc. 1996, 118, 9440–9441;
- 4bJ. M. Blackwell, K. L. Foster, V. H. Beck, W. E. Piers, J. Org. Chem. 1999, 64, 4887–4892;
- 4cD. J. Parks, J. M. Blackwell, W. E. Piers, J. Org. Chem. 2000, 65, 3090–3098.
- 5
- 5aS. Shinke, T. Tsuchimoto, Y. Kawakami, Silicon Chem. 2007, 3, 243–249;
- 5bS. Rendler, M. Oestreich, Angew. Chem. Int. Ed. 2008, 47, 5997–6000; Angew. Chem. 2008, 120, 6086–6089.
- 6D. J. Harrison, R. McDonald, L. Rosenberg, Organometallics 2005, 24, 1398–1400.
- 7M. Rubin, T. Schwier, V. Gevorgyan, J. Org. Chem. 2002, 67, 1936–1940.
- 8P. T. K. Lee, M. K. Skjel, L. Rosenberg, Organometallics 2013, 32, 1575–1578.
- 9
- 9aJ. Hermeke, M. Mewald, M. Oestreich, J. Am. Chem. Soc. 2013, 135, 17537–17546;
- 9bL. Greb, S. Tamke, J. Paradies, Chem. Commun. 2014, 50, 2318–2320.
- 10
- 10aM. Bols, T. Skrydstrup, Chem. Rev. 1995, 95, 1253–1277;
- 10bA. C. Sullivan, Appl. Organomet. Chem. 2001, 15, 83–84;
- 10cU. Herzog in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 469–489;
- 10dT.-Y. Luh, S.-T. Liu in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 1793–1868;
- 10eE. W. Colvin in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 1667–1685;
- 10fG. L. Larson in Organic Silicon Compounds (1989) (Eds.: ), Wiley, Hoboken, 2004, pp. 763–808;
- 10gK. Miura, A. Hosomi in Main Group Metals in Organic Synthesis (Eds.: ), Wiley-VCH, Weinheim, 2005, pp. 409–592.
10.1002/3527602607.ch10 Google Scholar
- 11
- 11aJ. S. Mills, G. A. Showell, Expert Opin. Invest. Drugs 2004, 13, 1149–1157;
- 11bP. K. Pooni, G. A. Showell, Mini. Rev. Med. Chem. 2006, 6, 1169–1177.
- 12L. W. Xu, L. Li, Z. H. Shi, Adv. Synth. Catal. 2010, 352, 243–279.
- 13A. D. Dilman, S. L. Ioffe, Chem. Rev. 2003, 103, 733–772.
- 14
- 14aR. D. Miller, J. Michl, Chem. Rev. 1989, 89, 1359–1410;
- 14bR. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev. 1995, 95, 1409–1430;
- 14cS. F. Thames, K. G. Panjnani, J. Inorg. Organomet. P. 1996, 6, 59–94;
- 14dR. M. Laine, A. Sellinger in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 2245–2316;
- 14eR. Drake, I. MacKinnon, R. Taylor in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 2217–2244;
- 14fD. Avnir, L. C. Klein, D. Levy, U. Schubert, A. B. Wojcik in The Chemistry of Organic Silicon Compounds (Eds.: ), Wiley, Hoboken, 2003, pp. 2317–2362;
- 14gD. B. Cordes, P. D. Lickiss, F. Rataboul, Chem. Rev. 2010, 110, 2081–2173.
- 15
- 15aF. C. Whitmore, E. W. Pietrusza, L. H. Sommer, J. Am. Chem. Soc. 1947, 69, 2108–2110;
- 15bJ. Curtice, H. Gilman, G. S. Hammond, J. Am. Chem. Soc. 1957, 79, 4754–4759.
- 16L. H. Sommer, C. L. Frye, G. A. Parker, K. W. Michael, J. Am. Chem. Soc. 1964, 86, 3271–3276.
- 17L. H. Sommer, J. D. Citron, J. Org. Chem. 1967, 32, 2470–2472.
- 18
- 18aM. Ishikawa, H. Sakamoto, T. Tabuchi, Organometallics 1991, 10, 3173–3176;
- 18bT. Kusukawa, Y. Kabe, B. Nestler, W. Ando, Organometallics 1995, 14, 2556–2564;
- 18cA. Naka, Y. Matsumoto, T. Itano, K. Hasegawa, T. Shimamura, J. Ohshita, A. Kunai, T. Takeuchi, M. Ishikawa, J. Organomet. Chem. 2009, 694, 346–352.
- 19V. Pongkittiphan, E. A. Theodorakis, W. Chavasiri, Tetrahedron Lett. 2009, 50, 5080–5082.
- 20R. Savela, W. Zawartka, R. Leino, Organometallics 2012, 31, 3199–3206.
- 21
- 21aR. D. C. Richards, J. Hollingshurst, J. A. Semlyen, Polymer 1993, 34, 4965–4968;
- 21bJ. Li, P. Ren, C. M. Zhan, J. G. Qin, Polym. Int. 1999, 48, 491–494;
- 21cP. Cancouët, E. Daudet, G. Hélary, M. Moreau, G. Sauvet, J. Polym. Sci. Part A 2000, 38, 826–836.
- 22N. S. C. Nametkin, T. I. Chernysheva, O V. Kuz'min, Izv. Akad. Nauk SSSR, Ser. Khim. 1967, 9, 2117–2118.
- 23
- 23aA. Kunai, T. Kawakami, E. Toyoda, M. Ishikawa, Organometallics 1992, 11, 2708–2711;
- 23bA. Kunai, J. Ohshita, J. Organomet. Chem. 2003, 686, 3–15.
- 24HCl was generated by the reaction of NaCl (10 equiv relative to the starting hydrosilane) with concentrated H2SO4 and transferred into the reaction vessel at low temperature. A large excess was used because the exact amount of HCl that is transferred into the reaction vessel by this method cannot be controlled.
- 25
- 25aM. Bordeau, S. M. Djamei, R. Calas, J. Dunogues, J. Organomet. Chem. 1985, 288, 131–138;
- 25bU. Gross, D. Kaufmann, Chem. Ber. 1987, 120, 991–994;
- 25cA. B. Seddon, S. Hunt, J. P. Rourke, D. W. Bruce, Adv. Mater. Opt. Electron. 1994, 4, 285–291;
- 25dL. Rosenberg, Macromol. Symp. 2003, 196, 347–353;
- 25eK. Itami, K. Terakawa, J.-i. Yoshida, O. Kajimoto, Bull. Chem. Soc. Jpn. 2004, 77, 2071–2080.
- 26J. M. Blackwell, D. J. Morrison, W. E. Piers, Tetrahedron 2002, 58, 8247–8254.
- 27
- 27aQ. S. Li, J. Zhang, S. Zhang, Chem. Phys. Lett. 2005, 404, 100–106;
- 27bS. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104;
- 27cD. A. Pantazis, F. Neese, Theor. Chem. Acc. 2012, 131, 1292.
- 28V. V. Gevorgyan, M. Rubin, S. Benson, J. X. Liu, Y. Yamamoto, J. Org. Chem. 2000, 65, 6179–6186.
- 29S. Masaoka, T. Banno, M. Ishikawa, J. Organomet. Chem. 2006, 691, 174–181.