Optochemical Control of Biological Processes in Cells and Animals
Nicholas Ankenbruck
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorTaylor Courtney
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorYuta Naro
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Alexander Deiters
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
Search for more papers by this authorNicholas Ankenbruck
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorTaylor Courtney
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorYuta Naro
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Alexander Deiters
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260 USA
Search for more papers by this authorGraphical Abstract
Light the way: Chemical tools have found broad applications in biology for investigating cellular processes. By combining these tools with light as an external trigger, high spatial and temporal precision can be achieved. This Review highlights recent developments in optochemical tools that can be irreversibly or reversibly controlled, with a focus on applications in cells and animals.
Abstract
Biological processes are naturally regulated with high spatial and temporal control, as is perhaps most evident in metazoan embryogenesis. Chemical tools have been extensively utilized in cell and developmental biology to investigate cellular processes, and conditional control methods have expanded applications of these technologies toward resolving complex biological questions. Light represents an excellent external trigger since it can be controlled with very high spatial and temporal precision. To this end, several optically regulated tools have been developed and applied to living systems. In this review we discuss recent developments of optochemical tools, including small molecules, peptides, proteins, and nucleic acids that can be irreversibly or reversibly controlled through light irradiation, with a focus on applications in cells and animals.
Conflict of interest
The authors declare no conflict of interest.
References
- 1
- 1aC. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2012, 51, 8446–8476; Angew. Chem. 2012, 124, 8572–8604;
- 1bG. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2006, 45, 4900–4921; Angew. Chem. 2006, 118, 5020–5042;
- 1cH.-M. Lee, D. R. Larson, D. S. Lawrence, ACS Chem. Biol. 2009, 4, 409–427;
- 1dA. Gautier, C. Gauron, M. Volovitch, D. Bensimon, L. Jullien, S. Vriz, Nat. Chem. Biol. 2014, 10, 533–541;
- 1eP. Klán, T. Šolomek, C. G. Bochet, A. Blanc, R. Givens, M. Rubina, V. Popik, A. Kostikov, J. Wirz, Chem. Rev. 2013, 113, 119–191;
- 1fQ. Liu, A. Deiters, Acc. Chem. Res. 2014, 47, 45;
- 1gR. J. Mart, R. K. Allemann, Chem. Commun. 2016, 52, 12262–12277;
- 1hX. Ouyang, J. K. Chen, Chem. Biol. 2010, 17, 590–606.
- 2
- 2aJ. Niu, M. B. Johny, I. E. Dick, T. Inoue, Biophys. J. 2016, 111, 1132–1140;
- 2bK. Zhang, B. Cui, Trends Biotechnol. 2015, 33, 92–100;
- 2cK. Deisseroth, Nat. Neurosci. 2015, 18, 1213–1225;
- 2dM. Weitzman, K. M. Hahn, Curr. Opin. Cell Biol. 2014, 30, 112–120;
- 2eG. P. Pathak, J. D. Vrana, C. L. Tucker, Biol. Cell 2013, 105, 59–72;
- 2fN. Repina, A. Rosenbloom, A. Mukherjee, D.V. Schaffer, R.S. Kane, Annu. Rev. Chem. Biomol. Eg. 2017 8:1, 13–39..
- 3
- 3aM. Putyrski, C. Schultz, FEBS Lett. 2012, 586, 2097–2105;
- 3bS. Voss, L. Klewer, Y. W. Wu, Curr. Opin. Chem. Biol. 2015, 28, 194–201;
- 3cA. Fegan, B. White, J. C. Carlson, C. R. Wagner, Chem. Rev. 2010, 110, 3315–3336;
- 3dR. DeRose, T. Miyamoto, T. Inoue, Pflugers Archiv: Eur. J. Physiol. 2013, 465, 409–417.
- 4M. Y. Pecot, V. Malhotra, Cell 2004, 116, 99–107.
- 5R. Zoncu, R. M. Perera, D. M. Balkin, M. Pirruccello, D. Toomre, P. De Camilli, Cell 2009, 136, 1110–1121.
- 6M. S. Robinson, D. A. Sahlender, S. D. Foster, Dev. Cell 2010, 18, 324–331.
- 7A. V. Karginov, Y. Zou, D. Shirvanyants, P. Kota, N. V. Dokholyan, D. D. Young, K. M. Hahn, A. Deiters, J. Am. Chem. Soc. 2011, 133, 420–423.
- 8L. A. Banaszynski, C. W. Liu, T. J. Wandless, J. Am. Chem. Soc. 2005, 127, 4715–4721.
- 9A. V. Karginov, F. Ding, P. Kota, N. V. Dokholyan, K. M. Hahn, Nat. Biotechnol. 2010, 28, 743–747.
- 10N. Umeda, T. Ueno, C. Pohlmeyer, T. Nagano, T. Inoue, J. Am. Chem. Soc. 2011, 133, 12–14.
- 11K. R. Harwood, S. C. Miller, ChemBioChem 2009, 10, 2855–2857.
- 12K. A. Brown, Y. Zou, D. Shirvanyants, J. Zhang, S. Samanta, P. K. Mantravadi, N. V. Dokholyan, A. Deiters, Chem. Commun. 2015, 51, 5702–5705.
- 13
- 13aE. R. Ballister, C. Aonbangkhen, A. M. Mayo, M. A. Lampson, D. M. Chenoweth, Nat. Commun. 2014, 5, 5475;
- 13bE. R. Ballister, S. Ayloo, D. M. Chenoweth, M. A. Lampson, E. L. F. Holzbaur, Curr. Biol. 2015, 25, R 407–R408.
- 14C. Jing, V. W. Cornish, Acc. Chem. Res. 2011, 44, 784–792.
- 15M. Zimmermann, R. Cal, E. Janett, V. Hoffmann, C. G. Bochet, E. Constable, F. Beaufils, M. P. Wymann, Angew. Chem. Int. Ed. 2014, 53, 4717–4720; Angew. Chem. 2014, 126, 4808–4812.
- 16C. W. Wright, Z. F. Guo, F. S. Liang, ChemBioChem 2015, 16, 254–261.
- 17K. M. Schelkle, T. Griesbaum, D. Ollech, S. Becht, T. Buckup, M. Hamburger, R. Wombacher, Angew. Chem. Int. Ed. 2015, 54, 2825–2829; Angew. Chem. 2015, 127, 2867–2871.
- 18J. Broichhagen, J. A. Frank, D. Trauner, Acc. Chem. Res. 2015, 48, 1947–1960.
- 19
- 19aS. Pittolo, X. Gomez-Santacana, K. Eckelt, X. Rovira, J. Dalton, C. Goudet, J. P. Pin, A. Llobet, J. Giraldo, A. Llebaria, P. Gorostiza, Nat. Chem. Biol. 2014, 10, 813–815;
- 19bW. A. Velema, J. P. van der Berg, M. J. Hansen, W. Szymanski, A. J. Driessen, B. L. Feringa, Nat. Chem. 2013, 5, 924–928.
- 20W. A. Velema, M. J. Hansen, M. M. Lerch, A. J. Driessen, W. Szymanski, B. L. Feringa, Bioconjugate Chem. 2015, 26, 2592–2597.
- 21M. Schoenberger, A. Damijonaitis, Z. Zhang, D. Nagel, D. Trauner, ACS Chem. Neurosci. 2014, 5, 514–518.
- 22
- 22aR. Huckvale, M. Mortensen, D. Pryde, T. G. Smart, J. R. Baker, Org. Biomol. Chem. 2016, 14, 6676–6678;
- 22bM. Stein, S. J. Middendorp, V. Carta, E. Pejo, D. E. Raines, S. A. Forman, E. Sigel, D. Trauner, Angew. Chem. Int. Ed. 2012, 51, 10500–10504; Angew. Chem. 2012, 124, 10652–10656.
- 23A. Damijonaitis, J. Broichhagen, T. Urushima, K. Hull, J. Nagpal, L. Laprell, M. Schonberger, D. H. Woodmansee, A. Rafiq, M. P. Sumser, W. Kummer, A. Gottschalk, D. Trauner, ACS Chem. Neurosci. 2015, 6, 701–707.
- 24J. Broichhagen, M. Schonberger, S. C. Cork, J. A. Frank, P. Marchetti, M. Bugliani, A. M. Shapiro, S. Trapp, G. A. Rutter, D. J. Hodson, D. Trauner, Nat. Commun. 2014, 5, 5116.
- 25
- 25aW. Szymanski, M. E. Ourailidou, W. A. Velema, F. J. Dekker, B. L. Feringa, Chemistry 2015, 21, 16517–16524;
- 25bS. A. Reis, B. Ghosh, J. A. Hendricks, D. M. Szantai-Kis, L. Tork, K. N. Ross, J. Lamb, W. Read-Button, B. Zheng, H. Wang, C. Salthouse, S. J. Haggarty, R. Mazitschek, Nat. Chem. Biol. 2016, 12, 317–323.
- 26C. E. Weston, A. Kramer, F. Colin, O. Yildiz, M. G. Baud, F. J. Meyer-Almes, M. J. Fuchter, ACS Infect. Dis. 2017, 3, 152–161.
- 27M. J. Hansen, W. A. Velema, G. de Bruin, H. S. Overkleeft, W. Szymanski, B. L. Feringa, ChemBioChem 2014, 15, 2053–2057.
- 28C. Dumontet, M. A. Jordan, Nat. Rev. Drug Discovery 2010, 9, 790–803.
- 29J. Griggs, J. C. Metcalfe, R. Hesketh, Lancet Oncol. 2001, 2, 82–87.
- 30M. Borowiak, W. Nahaboo, M. Reynders, K. Nekolla, P. Jalinot, J. Hasserodt, M. Rehberg, M. Delattre, S. Zahler, A. Vollmar, D. Trauner, O. Thorn-Seshold, Cell 2015, 162, 403–411.
- 31M. Almena, I. Merida, Trends Biochem. Sci. 2011, 36, 593–603.
- 32F. Colon-Gonzalez, M. G. Kazanietz, Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2006, 1761, 827–837.
- 33J. A. Frank, M. Moroni, R. Moshourab, M. Sumser, G. R. Lewin, D. Trauner, Nat. Commun. 2015, 6, 7118.
- 34J. A. Frank, D. A. Yushchenko, D. J. Hodson, N. Lipstein, J. Nagpal, G. A. Rutter, J. S. Rhee, A. Gottschalk, N. Brose, C. Schultz, D. Trauner, Nat. Chem. Biol. 2016, 12, 755–762.
- 35A. Nadler, G. Reither, S. Feng, F. Stein, S. Reither, R. Muller, C. Schultz, Angew. Chem. Int. Ed. 2013, 52, 6330–6334; Angew. Chem. 2013, 125, 6455–6459.
- 36W. Nomura, T. Narumi, N. Ohashi, Y. Serizawa, N. E. Lewin, P. M. Blumberg, T. Furuta, H. Tamamura, ChemBioChem 2011, 12, 535–539.
- 37F. Imamura, T. Horai, M. Mukai, K. Shinkai, M. Sawada, H. Akedo, Biochem. Biophys. Res. Commun. 1993, 193, 497–503.
- 38F. Hövelmann, K. M. Kedziora, A. Nadler, R. Müller, K. Jalink, C. Schultz, Cell Chem. Biol. 2016, 23, 629–634.
- 39M. J. Hansen, W. A. Velema, M. M. Lerch, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2015, 44, 3358–3377.
- 40D. W. Eyre, M. L. Cule, D. Griffiths, D. W. Crook, T. E. Peto, A. S. Walker, D. J. Wilson, PLoS Comput. Biol. 2013, 9, e 1003059.
- 41W. A. Velema, J. P. van der Berg, W. Szymanski, A. J. Driessen, B. L. Feringa, ACS Chem. Biol. 2014, 9, 1969–1974.
- 42M. A. Priestman, L. Sun, D. S. Lawrence, ACS Chem. Biol. 2011, 6, 377–384.
- 43
- 43aM. Lovett-Barron, G. F. Turi, P. Kaifosh, P. H. Lee, F. Bolze, X. H. Sun, J. F. Nicoud, B. V. Zemelman, S. M. Sternson, A. Losonczy, Nat. Neurosci. 2012, 15, 423–430; M. Lovett-Barron, G. F. Turi, P. Kaifosh, P. H. Lee, F. Bolze, X. H. Sun, J. F. Nicoud, B. V. Zemelman, S. M. Sternson, A. Losonczy, Nat. Neurosci. 2012, 15, s 421–s423;
- 43bC. Q. Chiu, G. Lur, T. M. Morse, N. T. Carnevale, G. C. Ellis-Davies, M. J. Higley, Science 2013, 340, 759–762;
- 43cT. Hayama, J. Noguchi, S. Watanabe, N. Takahashi, A. Hayashi-Takagi, G. C. Ellis-Davies, M. Matsuzaki, H. Kasai, Nat. Neurosci. 2013, 16, 1409–1416;
- 43dJ. M. Amatrudo, J. P. Olson, H. K. Agarwal, G. C. R. Ellis-Davies, Eur. J. Neurosci. 2015, 41, 5–16.
- 44M. M. Lerch, M. J. Hansen, W. A. Velema, W. Szymanski, B. L. Feringa, Nat. Commun. 2016, 7, 12054.
- 45L. Fournier, C. Gauron, L. Xu, I. Aujard, T. Le Saux, N. Gagey-Eilstein, S. Maurin, S. Dubruille, J. B. Baudin, D. Bensimon, M. Volovitch, S. Vriz, L. Jullien, ACS Chem. Biol. 2013, 8, 1528–1536.
- 46
- 46aD. K. Sinha, P. Neveu, N. Gagey, I. Aujard, T. Le Saux, C. Rampon, C. Gauron, K. Kawakami, C. Leucht, L. Bally-Cuif, M. Volovitch, D. Bensimon, L. Jullien, S. Vriz, Zebrafish 2010, 7, 199–204;
- 46bD. K. Sinha, P. Neveu, N. Gagey, I. Aujard, C. Benbrahim-Bouzidi, T. Le Saux, C. Rampon, C. Gauron, B. Goetz, S. Dubruille, M. Baaden, M. Volovitch, D. Bensimon, S. Vriz, L. Jullien, ChemBioChem 2010, 11, 653–663.
- 47P. Neveu, I. Aujard, C. Benbrahim, T. Le Saux, J. F. Allemand, S. Vriz, D. Bensimon, L. Jullien, Angew. Chem. Int. Ed. 2008, 47, 3744–3746; Angew. Chem. 2008, 120, 3804–3806.
- 48S. Yamazoe, Q. Liu, L. E. McQuade, A. Deiters, J. K. Chen, Angew. Chem. Int. Ed. 2014, 53, 10114–10118; Angew. Chem. 2014, 126, 10278–10282.
- 49
- 49aG. Casi, D. Neri, J. Controlled Release 2012, 161, 422–428;
- 49bU. Iyer, V. J. Kadambi, J. Pharmacol. Toxicol. Methods 2011, 64, 207–212;
- 49cP. D. Senter, Curr. Opin. Chem. Biol. 2009, 13, 235–244;
- 49dT. V. Jerjian, A. E. Glode, L. A. Thompson, C. L. O'Bryant, Pharmacotherapy 2016, 36, 99–116.
- 50R. R. Nani, A. P. Gorka, T. Nagaya, H. Kobayashi, M. J. Schnermann, Angew. Chem. Int. Ed. 2015, 54, 13635–13638; Angew. Chem. 2015, 127, 13839–13842.
- 51A. P. Gorka, R. R. Nani, J. Zhu, S. Mackem, M. J. Schnermann, J. Am. Chem. Soc. 2014, 136, 14153–14159.
- 52E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, Science 2006, 313, 1642–1645.
- 53W. H. Li, G. Zheng, Photochem. Photobiol. Sci. 2012, 11, 460–471.
- 54S. Banala, D. Maurel, S. Manley, K. Johnsson, ACS Chem. Biol. 2012, 7, 289–293.
- 55H. L. Lee, S. J. Lord, S. Iwanaga, K. Zhan, H. Xie, J. C. Williams, H. Wang, G. R. Bowman, E. D. Goley, L. Shapiro, R. J. Twieg, J. Rao, W. E. Moerner, J. Am. Chem. Soc. 2010, 132, 15099–15101.
- 56
- 56aA. V. Anzalone, Z. Chen, V. W. Cornish, Chem. Commun. 2016, 52, 9442–9445;
- 56bJ. C. Vaughan, S. Jia, X. Zhuang, Nat. Methods 2012, 9, 1181–1184.
- 57H. W. Mbatia, S. C. Burdette, Biochemistry 2012, 51, 7212–7224.
- 58J. H. Kaplan, G. C. Ellis-Davies, Proc. Natl. Acad. Sci. USA 1988, 85, 6571–6575.
- 59H. K. Agarwal, R. Janicek, S. H. Chi, J. W. Perry, E. Niggli, G. C. Ellis-Davies, J. Am. Chem. Soc. 2016, 138, 3687–3693.
- 60K. L. Ciesienski, L. M. Hyman, D. T. Yang, K. L. Haas, M. G. Dickens, R. J. Holbrook, K. J. Franz, Eur. J. Inorg. Chem. 2010, 2224–2228.
- 61P. N. Basa, S. Antala, R. E. Dempski, S. C. Burdette, Angew. Chem. Int. Ed. 2015, 54, 13027–13031; Angew. Chem. 2015, 127, 13219–13223.
- 62C. Gwizdala, S. C. Burdette, Curr. Opin. Chem. Biol. 2013, 17, 137–142.
- 63A. S. Baker, A. Deiters, ACS Chem. Biol. 2014, 9, 1398–1407.
- 64
- 64aD. S. Lawrence, Curr. Opin. Chem. Biol. 2005, 9, 570–575;
- 64bM. E. Hahn, T. W. Muir, Trends Biochem. Sci. 2005, 30, 26–34.
- 65A. Gautier, D. P. Nguyen, H. Lusic, W. An, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2010, 132, 4086–4088.
- 66
- 66aJ. Hemphill, C. Chou, J. W. Chin, A. Deiters, J. Am. Chem. Soc. 2013, 135, 13433–13439;
- 66bC. Chou, D. D. Young, A. Deiters, ChemBioChem 2010, 11, 972–977.
- 67
- 67aW. F. Edwards, D. D. Young, A. Deiters, ACS Chem. Biol. 2009, 4, 441–445;
- 67bJ. Luo, E. Arbely, J. Zhang, C. Chou, R. Uprety, J. W. Chin, A. Deiters, Chem. Commun. 2016, 52, 8529–8532.
- 68W. Ren, A. Ji, H.-w. Ai, J. Am. Chem. Soc. 2015, 137, 2155–2158.
- 69D. P. Nguyen, M. Mahesh, S. J. Elsässer, S. M. Hancock, C. Uttamapinant, J. W. Chin, J. Am. Chem. Soc. 2014, 136, 2240–2243.
- 70O. S. Walker, S. J. Elsässer, M. Mahesh, M. Bachman, S. Balasubramanian, J. W. Chin, J. Am. Chem. Soc. 2016, 138, 718–721.
- 71
- 71aE. Arbely, J. Torres-Kolbus, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2012, 134, 11912–11915;
- 71bS. Lahiri, R. Seidel, M. Engelhard, C. F. W. Becker, Mol. BioSyst. 2010, 6, 2423–2429.
- 72
- 72aA. C. Dar, K. M. Shokat, Annu. Rev. Biochem. 2011, 80, 769–795;
- 72bZ. A. Knight, K. M. Shokat, Chem. Biol. 2005, 12, 621–637.
- 73A. Gautier, A. Deiters, J. W. Chin, J. Am. Chem. Soc. 2011, 133, 2124–2127.
- 74P. J. Roberts, C. J. Der.
- 75M. Cirit, C.-C. Wang, J. M. Haugh, J. Biol. Chem. 2010, 285, 36736–36744.
- 76
- 76aJ. Luo, M. Kong, L. Liu, S. Samanta, B. Van Houten, A. Deiters, ChemBioChem 2017, 18, 466–469;>
- 76bA. Liaunardy-Jopeace, B.L. Murton, M. Mahesh, J.W. Chin, J.R. James, Nature Struct. Mol. Biol 2017, 24, 1155–1163.
- 77J. Luo, R. Uprety, Y. Naro, C. Chou, D. P. Nguyen, J. W. Chin, A. Deiters, J. Am. Chem. Soc. 2014, 136, 15551–15558.
- 78
- 78aT. Gaj, C. A. Gersbach, C. F. Barbas III, Trends Biotechnol. 2013, 31, 397–405;
- 78bA. A. Nemudryi, K. R. Valetdinova, S. P. Medvedev, S. M. Zakian, Acta Naturae 2014, 6, 19–40.
- 79
- 79aM. L. Maeder, C. A. Gersbach, Mol. Ther. 2016, 24, 430–446;
- 79bD. B. T. Cox, R. J. Platt, F. Zhang, Nat. Med. 2015, 21, 121–131.
- 80C. Chou, A. Deiters, Angew. Chem. Int. Ed. 2011, 50, 6839–6842; Angew. Chem. 2011, 123, 6971–6974.
- 81J. Hemphill, E. K. Borchardt, K. Brown, A. Asokan, A. Deiters, J. Am. Chem. Soc. 2015, 137, 5642–5645.
- 82
- 82aS. H. Sternberg, J. A. Doudna, Mol. Cell 2015, 58, 568–574;
- 82bO. Shalem, N. E. Sanjana, F. Zhang, Nat. Rev. Genet. 2015, 16, 299–311.
- 83
- 83aY. Nihongaki, F. Kawano, T. Nakajima, M. Sato, Nat. Biotechnol. 2015, 33, 755–760;
- 83bY. Nihongaki, S. Yamamoto, F. Kawano, H. Suzuki, M. Sato, Chem. Biol. 2015, 22, 169–174;
- 83cX. X. Zhou, X. Zou, H. K. Chung, Y. Gao, Y. Liu, L. S. Qi, M. Z. Lin, ACS Chem. Biol. 2017, DOI: 10.1021/acschembio.7b00603.
- 84L. R. Polstein, C. A. Gersbach, Nat. Chem. Biol. 2015, 11, 198–200.
- 85P. K. Jain, V. Ramanan, A. G. Schepers, N. S. Dalvie, A. Panda, H. E. Fleming, S. N. Bhatia, Angew. Chem. Int. Ed. 2016, 55, 12440–12444; Angew. Chem. 2016, 128, 12628–12632.
- 86H. Li, J.-M. Hah, D. S. Lawrence, J. Am. Chem. Soc. 2008, 130, 10474–10475.
- 87
- 87aE. Janett, Y. Bernardinelli, D. Müller, C. G. Bochet, Bioconjugate Chem. 2015, 26, 2408–2418;
- 87bH.-M. Lee, W. Xu, D. S. Lawrence, J. Am. Chem. Soc. 2011, 133, 2331–2333;
- 87cM. Sainlos, W. S. Iskenderian-Epps, N. B. Olivier, D. Choquet, B. Imperiali, J. Am. Chem. Soc. 2013, 135, 4580–4583;
- 87dR. J. Mancini, L. Stutts, T. Moore, A. P. Esser-Kahn, Angew. Chem. Int. Ed. 2015, 54, 5962—5965;
- 87eC. P. O'Banion, L. T. Nguyen, Q. Wang, M. A. Priestman, S. P. Holly, L. V. Parise, D. S. Lawrence, Angew. Chem. Int. Ed. 2016, 55, 950–954; Angew. Chem. 2016, 128, 962–966.
- 88E. Decaneto, S. Abbruzzetti, I. Heise, W. Lubitz, C. Viappiani, M. Knipp, Photochem. Photobiol. Sci. 2015, 14, 300–307.
- 89
- 89aC. A. Goubko, A. Basak, S. Majumdar, H. Jarrell, N. H. Khieu, X. Cao, J. Biomed. Mater. Res. Part A 2013, 101A, 787–796;
- 89bM. Wirkner, S. Weis, V. S. Miguel, M. Álvarez, R. A. Gropeanu, M. Salierno, A. Sartoris, R. E. Unger, C. J. Kirkpatrick, A. del Campo, ChemBioChem 2011, 12, 2623–2629;
- 89cD. S. Miller, S. Chirayil, H. L. Ball, K. J. Luebke, ChemBioChem 2009, 10, 577–584;
- 89dS. Petersen, J. M. Alonso, A. Specht, P. Duodu, M. Goeldner, A. del Campo, Angew. Chem. Int. Ed. 2008, 47, 3192–3195; Angew. Chem. 2008, 120, 3236–3239.
- 90
- 90aB. N. Goguen, A. Aemissegger, B. Imperiali, J. Am. Chem. Soc. 2011, 133, 11038–11041;
- 90bM. A. Azagarsamy, K. S. Anseth, Angew. Chem. Int. Ed. 2013, 52, 13803–13807; Angew. Chem. 2013, 125, 14048–14052.
- 91K. Jacobson, Z. Rajfur, E. Vitriol, K. Hahn, Trends Cell Biol. 2008, 18, 443–450.
- 92
- 92aB. K. Müller, D. G. Jay, F. Bonhoeffer, Curr. Biol. 1996, 6, 1497–1502;
- 92bR. Schröder, D. G. Jay, D. Tautz, Mech. Dev. 1999, 80, 191–195;
- 92cR. Schröder, D. Tautz, D. G. Jay, Dev. Genes Evol. 1996, 206, 86–88.
- 93Y. Sano, W. Watanabe, S. Matsunaga, J. Cell Sci. 2014, 127, 1621.
- 94
- 94aT. Yogo, Y. Urano, A. Mizushima, H. Sunahara, T. Inoue, K. Hirose, M. Iino, K. Kikuchi, T. Nagano, Proc. Natl. Acad. Sci. USA 2008, 105, 28–32;
- 94bS. Sato, K. Morita, H. Nakamura, Bioconjugate Chem. 2015, 26, 250–256;
- 94cJ. C. Joyner, L. Hocharoen, J. A. Cowan, J. Am. Chem. Soc. 2012, 134, 3396–3410.
- 95J. Lee, D. G. Udugamasooriya, H.-S. Lim, T. Kodadek, Nat. Chem. Biol. 2010, 6, 258–260.
- 96X. Liu, M. Dix, A. E. Speers, D. A. Bachovchin, A. M. Zuhl, B. F. Cravatt, T. J. Kodadek, ChemBioChem 2012, 13, 2082–2093.
- 97A. Keppler, J. Ellenberg, ACS Chem. Biol. 2009, 4, 127–138.
- 98K. Takemoto, T. Matsuda, M. McDougall, D. H. Klaubert, A. Hasegawa, G. V. Los, K. V. Wood, A. Miyawaki, T. Nagai, ACS Chem. Biol. 2011, 6, 401–406.
- 99M. E. Bulina, D. M. Chudakov, O. V. Britanova, Y. G. Yanushevich, D. B. Staroverov, T. V. Chepurnykh, E. M. Merzlyak, M. A. Shkrob, S. Lukyanov, K. A. Lukyanov, Nat. Biotechnol. 2006, 24, 95–99.
- 100
- 100aK. Takemoto, T. Matsuda, N. Sakai, D. Fu, M. Noda, S. Uchiyama, I. Kotera, Y. Arai, M. Horiuchi, K. Fukui, T. Ayabe, F. Inagaki, H. Suzuki, T. Nagai, Sci. Rep. 2013, 3, 2629;
- 100bX. Shu, V. Lev-Ram, T. J. Deerinck, Y. Qi, E. B. Ramko, M. W. Davidson, Y. Jin, M. H. Ellisman, R. Y. Tsien, PLoS Biol. 2011, 9, e 1001041.
- 101A. P. Wojtovich, T. H. Foster, Redox Biol. 2014, 2, 368–376.
- 102J. E. Toettcher, C. A. Voigt, O. D. Weiner, W. A. Lim, Nat. Methods 2011, 8, 35–38.
- 103J. J. Yi, H. Wang, M. Vilela, G. Danuser, K. M. Hahn, ACS Synth. Biol. 2014, 3, 788–795.
- 104
- 104aH. Yumerefendi, A. M. Lerner, S. P. Zimmerman, K. Hahn, J. E. Bear, B. D. Strahl, B. Kuhlman, Nat. Chem. Biol. 2016, 12, 399–401;
- 104bA. Levskaya, O. D. Weiner, W. A. Lim, C. A. Voigt, Nature 2009, 461, 997–1001;
- 104cJ. I. Spiltoir, D. Strickland, M. Glotzer, C. L. Tucker, ACS Synth. Biol. 2016, 5, 554–560.
- 105
- 105aS. Konermann, M. D. Brigham, A. Trevino, P. D. Hsu, M. Heidenreich, C. Le, R. J. Platt, D. A. Scott, G. M. Church, F. Zhang, Nature 2013, advance online publication;
- 105bL. R. Polstein, C. A. Gersbach, J. Am. Chem. Soc. 2012, 134, 16480–16483.
- 106F. Kawano, R. Okazaki, M. Yazawa, M. Sato, Nat. Chem. Biol. 2016, 12, 1059–1064.
- 107A. V. Kravitz, B. S. Freeze, P. R. L. Parker, K. Kay, M. T. Thwin, K. Deisseroth, A. C. Kreitzer, Nature 2010, 466, 622–626.
- 108D. A. James, D. C. Burns, G. A. Woolley, Protein Eng. 2001, 14, 983–991.
- 109M. D. Yamada, Y. Nakajima, H. Maeda, S. Maruta, J. Biochem. 2007, 142, 691–698.
- 110
- 110aB. Schierling, A.-J. Noël, W. Wende, E. Volkov, E. Kubareva, T. Oretskaya, M. Kokkinidis, A. Römpp, B. Spengler, A. Pingoud, Proc. Natl. Acad. Sci. USA 2010, 107, 1361–1366;
- 110bN. Umeki, T. Yoshizawa, Y. Sugimoto, T. Mitsui, K. Wakabayashi, S. Maruta, J. Biochem. 2004, 136, 839–846;
- 110cA. M. Caamaño, M. E. Vázquez, J. Martínez-Costas, L. Castedo, J. L. Mascareñas, Angew. Chem. Int. Ed. 2000, 39, 3104–3107;
10.1002/1521-3773(20000901)39:17<3104::AID-ANIE3104>3.0.CO;2-0 CAS PubMed Web of Science® Google ScholarAngew. Chem. 2000, 112, 3234–3237;
- 110dF. Zhang, A. Zarrine-Afsar, M. S. Al-Abdul-Wahid, R. S. Prosser, A. R. Davidson, G. A. Woolley, J. Am. Chem. Soc. 2009, 131, 2283–2289;
- 110eF. K. M. Blacklock, B. J. Yachnin, G. A. Woolley, S. D. Khare, J. Am. Chem. Soc. 2018, 140, 14–17.
- 111M. Bose, D. Groff, J. Xie, E. Brustad, P. G. Schultz, J. Am. Chem. Soc. 2006, 128, 388–389.
- 112C. Hoppmann, V. K. Lacey, G. V. Louie, J. Wei, J. P. Noel, L. Wang, Angew. Chem. Int. Ed. 2014, 53, 3932–3936; Angew. Chem. 2014, 126, 4013–4017.
- 113C. Hoppmann, I. Maslennikov, S. Choe, L. Wang, J. Am. Chem. Soc. 2015, 137, 11218–11221.
- 114A. Reiner, E. Y. Isacoff in Photoswitching Proteins: Methods and Protocols (Ed.: ), Springer, New York, 2014, pp. 45–68.
- 115J. Broichhagen, D. Trauner, Curr. Opin. Chem. Biol. 2014, 21, 121–127.
- 116
- 116aE. Bartels, N. H. Wassermann, B. F. Erlanger, Proc. Natl. Acad. Sci. USA 1971, 68, 1820–1823;
- 116bG. Sandoz, J. Levitz, R. H. Kramer, E. Y. Isacoff, Neuron 2012, 74, 1005–1014;
- 116cM. Volgraf, P. Gorostiza, R. Numano, R. H. Kramer, E. Y. Isacoff, D. Trauner, Nat. Chem. Biol. 2006, 2, 47–52;
- 116dM. Banghart, K. Borges, E. Isacoff, D. Trauner, R. H. Kramer, Nat. Neurosci. 2004, 7, 1381–1386.
- 117S. Szobota, P. Gorostiza, F. Del Bene, C. Wyart, D. L. Fortin, K. D. Kolstad, O. Tulyathan, M. Volgraf, R. Numano, H. L. Aaron, E. K. Scott, R. H. Kramer, J. Flannery, H. Baier, D. Trauner, E. Y. Isacoff, Neuron 2007, 54, 535–545.
- 118J. Broichhagen, A. Damijonaitis, J. Levitz, K. R. Sokol, P. Leippe, D. Konrad, E. Y. Isacoff, D. Trauner, ACS Cent. Sci. 2015, 1, 383–393.
- 119M. J. Hinner, K. Johnsson, Curr. Opin. Biotechnol. 2010, 21, 766–776.
- 120
- 120aK. Lang, L. Davis, J. Torres-Kolbus, C. Chou, A. Deiters, J. W. Chin, Nat. Chem. 2012, 4, 298–304;
- 120bY.-H. Tsai, S. Essig, J. R. James, K. Lang, J. W. Chin, Nat. Chem. 2015, 7, 554–561.
- 121
- 121aC. Knie, M. Utecht, F. Zhao, H. Kulla, S. Kovalenko, A. M. Brouwer, P. Saalfrank, S. Hecht, D. Bléger, Chem. Eur. J. 2014, 20, 16492–16501;
- 121bD. Bléger, J. Schwarz, A. M. Brouwer, S. Hecht, J. Am. Chem. Soc. 2012, 134, 20597–20600;
- 121cA. A. Beharry, O. Sadovski, G. A. Woolley, J. Am. Chem. Soc. 2011, 133, 19684–19687.
- 122C. Boulègue, M. Löweneck, C. Renner, L. Moroder, ChemBioChem 2007, 8, 591–594.
- 123N. C. Turner, J. S. Reis-Filho.
- 124E. R. Mainz, Q. Wang, D. S. Lawrence, N. L. Allbritton, Angew. Chem. 2016, 128, 13289–13292.
10.1002/ange.201606914 Google Scholar
- 125J. A. González-Vera, M. C. Morris, Proteomes 2015, 3, 369–410.
- 126A. Proctor, S. G. Herrera-Loeza, Q. Wang, D. S. Lawrence, J. J. Yeh, N. L. Allbritton, Anal. Chem. 2014, 86, 4573–4580.
- 127
- 127aW. Kolch, A. Pitt, Nat. Rev. Cancer 2010, 10, 618–629;
- 127bE. D. G. Fleuren, L. Zhang, J. Wu, R. J. Daly, Nat. Rev. Cancer 2016, 16, 83–98.
- 128
- 128aT. Endoh, M. Sisido, T. Ohtsuki, Nucleic Acids Symp. Ser. 2007, 51, 127–128;
10.1093/nass/nrm064 Google Scholar
- 128bT. Endoh, M. Sisido, T. Ohtsuki, Bioconjugate Chem. 2008, 19, 1017–1024;
- 128cT. Endoh, M. Sisido, T. Ohtsuki, J. Controlled Release 2009, 137, 241–245;
- 128dY. Matsushita-Ishiodori, R. Kuwabara, H. Sakakoshi, T. Endoh, T. Ohtsuki, Bioconjugate Chem. 2011, 22, 2222–2226.
- 129J. M. Govan, R. Uprety, M. Thomas, H. Lusic, M. O. Lively, A. Deiters, ACS Chem. Biol. 2013, 8, 2272–2282.
- 130
- 130aY. Yang, Y. Yang, X. Xie, Z. Wang, W. Gong, H. Zhang, Y. Li, F. Yu, Z. Li, X. Mei, Biomaterials 2015, 48, 84–96;
- 130bX. Xie, Y. Yang, Y. Yang, X. Mei, J. Drug Targeting 2015, 23, 789–799.
- 131S. Mizukami, M. Hosoda, T. Satake, S. Okada, Y. Hori, T. Furuta, K. Kikuchi, J. Am. Chem. Soc. 2010, 132, 9524–9525.
- 132
- 132aY. Yang, Y. Yang, X. Xie, X. Cai, Z. Wang, W. Gong, H. Zhang, Y. Li, X. Mei, Colloids Surf. B 2015, 128, 427–438;
- 132bX. Xie, Y. Yang, Y. Yang, H. Zhang, Y. Li, X. Mei, Drug Delivery 2016, 23, 2445–2456.
- 133P. K. Jain, D. Karunakaran, S. H. Friedman, Angew. Chem. Int. Ed. 2013, 52, 1404–1409; Angew. Chem. 2013, 125, 1444–1449.
- 134B. R. Sarode, K. Kover, P. Y. Tong, C. Zhang, S. H. Friedman, Mol. Pharmaceutics 2016, 13, 3835–3841.
- 135
- 135aV. K. Sharma, P. Rungta, A. K. Prasad, RSC Adv. 2014, 4, 16618–16631;
- 135bP. Reautschnig, P. Vogel, T. Stafforst, RNA Biol. 2017, 14, 651–668;
- 135cC. F. Bennett, E. E. Swayze, Annu. Rev. Pharmacol. Toxicol. 2010, 50, 259–293.
- 136
- 136aA. S. Lubbe, W. Szymanski, B. L. Feringa, Chem. Soc. Rev. 2017, 46, 1052–1079;
- 136bB. K. Ruble, S. B. Yeldell, I. J. Dmochowski, J. Inorg. Biochem. 2015, 150, 182–188.
- 137J. L. Richards, X. Tang, A. Turetsky, I. J. Dmochowski, Bioorg. Med. Chem. Lett. 2008, 18, 6255–6258.
- 138
- 138aA. J. Tomasini, A. D. Schuler, J. A. Zebala, A. N. Mayer, Genesis 2009, 47, 736–743;
- 138bA. Tallafuss, D. Gibson, P. Morcos, Y. Li, S. Seredick, J. Eisen, P. Washbourne, Development 2012, 139, 1691–1699.
- 139
- 139aG. Zheng, L. Cochella, J. Liu, O. Hobert, W.-h. Li, ACS Chem. Biol. 2011, 6, 1332–1338;
- 139bJ. C. Griepenburg, B. K. Ruble, I. J. Dmochowski, Bioorg. Med. Chem. 2013, 21, 6198–6204.
- 140X. Tang, J. Swaminathan, A. M. Gewirtz, I. J. Dmochowski, Nucleic Acids Res. 2008, 36, 559–569.
- 141
- 141aI. A. Shestopalov, S. Sinha, J. K. Chen, Nat. Chem. Biol. 2007, 3, 650–651;
- 141bX. Ouyang, I. A. Shestopalov, S. Sinha, G. Zheng, C. L. W. Pitt, W.-H. Li, A. J. Olson, J. K. Chen, J. Am. Chem. Soc. 2009, 131, 13255–13269.
- 142
- 142aJ. C. Griepenburg, T. L. Rapp, P. J. Carroll, J. Eberwine, I. J. Dmochowski, Chem. Sci. 2015, 6, 2342–2346;
- 142bL. Wu, Y. Wang, J. Wu, C. Lv, J. Wang, X. Tang, Nucleic Acids Res. 2013, 41, 677–686;
- 142cY. Wang, L. Wu, P. Wang, C. Lv, Z. Yang, X. Tang, Nucleic Acids Res. 2012, 40, 11155–11162;
- 142dS. Yamazoe, I. A. Shestopalov, E. Provost, S. D. Leach, J. K. Chen, Angew. Chem. Int. Ed. 2012, 51, 6908–6911; Angew. Chem. 2012, 124, 7014–7017;
- 142eP. Seyfried, L. Eiden, N. Grebenovsky, G. Mayer, A. Heckel, Angew. Chem. Int. Ed. 2017, 56, 359–363; Angew. Chem. 2017, 129, 365–369.
- 143
- 143aW. T. Monroe, M. M. McQuain, M. S. Chang, J. S. Alexander, F. R. Haselton, J. Biol. Chem. 1999, 274, 20895–20900;
- 143bH. Ando, T. Furuta, R. Y. Tsien, H. Okamoto, Nat. Genet. 2001, 28, 317–325;
- 143cS. Shah, S. Rangarajan, S. H. Friedman, Angew. Chem. Int. Ed. 2005, 44, 1328–1332; Angew. Chem. 2005, 117, 1352–1356.
- 144
- 144aS. G. Chaulk, A. M. MacMillan, Nucleic Acids Res. 1998, 26, 3173–3178;
- 144bS. G. Chaulk, A. M. MacMillan, Angew. Chem. Int. Ed. 2001, 40, 2149–2152;
10.1002/1521-3773(20010601)40:11<2149::AID-ANIE2149>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 2001, 113, 2207–2210.
- 145
- 145aK. Usui, M. Aso, M. Fukuda, H. Suemune, J. Org. Chem. 2008, 73, 241–248;
- 145bL. Anhäuser, F. Muttach, A. Rentmeister, Chem. Commun. 2018Epub ahead of print.
- 146
- 146aD. D. Young, H. Lusic, M. O. Lively, J. A. Yoder, A. Deiters, ChemBioChem 2008, 9, 2937–2940;
- 146bA. Deiters, R. A. Garner, H. Lusic, J. M. Govan, M. Dush, N. M. Nascone-Yoder, J. A. Yoder, J. Am. Chem. Soc. 2010, 132, 15644–15650.
- 147
- 147aF. Schäfer, J. Wagner, A. Knau, S. Dimmeler, A. Heckel, Angew. Chem. Int. Ed. 2013, 52, 13558–13561; Angew. Chem. 2013, 125, 13801–13805;
- 147bC. M. Connelly, A. Deiters in Cancer Cell Signaling: Methods and Protocols (Ed.: ), Springer, New York, 2014, pp. 99–114;
- 147cC. M. Connelly, R. Uprety, J. Hemphill, A. Deiters, Mol. BioSyst. 2012, 8, 2987–2993.
- 148J. Hemphill, Q. Liu, R. Uprety, S. Samanta, M. Tsang, R. L. Juliano, A. Deiters, J. Am. Chem. Soc. 2015, 137, 3656–3662.
- 149
- 149aD. D. Young, W. F. Edwards, H. Lusic, M. O. Lively, A. Deiters, Chem. Commun. 2008, 462–464;
- 149bK. Tanaka, H. Katada, N. Shigi, A. Kuzuya, M. Komiyama, ChemBioChem 2008, 9, 2120–2126.
- 150
- 150aA. Prokup, J. Hemphill, A. Deiters, J. Am. Chem. Soc. 2012, 134, 3810–3815;
- 150bJ. M. Govan, D. D. Young, M. O. Lively, A. Deiters, Tetrahedron Lett. 2015, 56, 3639–3642;
- 150cJ. M. Govan, R. Uprety, J. Hemphill, M. O. Lively, A. Deiters, ACS Chem. Biol. 2012, 7, 1247–1256;
- 150dJ. M. Govan, M. O. Lively, A. Deiters, J. Am. Chem. Soc. 2011, 133, 13176–13182.
- 151D. D. Young, M. O. Lively, A. Deiters, J. Am. Chem. Soc. 2010, 132, 6183–6193.
- 152M. L. Bobbin, J. J. Rossi, Annu. Rev. Pharmacol. Toxicol. 2016, 56, 103–122.
- 153Y. Matsushita-Ishiodori, T. Ohtsuki, Acc. Chem. Res. 2012, 45, 1039–1047.
- 154
- 154aQ. N. Nguyen, R. V. Chavli, J. T. Marques, P. G. Conrad II, D. Wang, W. He, B. E. Belisle, A. Zhang, L. M. Pastor, F. R. Witney, M. Morris, F. Heitz, G. Divita, B. R. G. Williams, G. K. McMaster, Biochim. Biophys. Acta Biomembr. 2006, 1758, 394–403;
- 154bS. Shah, S. H. Friedman, Oligonucleotides 2007, 17, 35–43.
- 155P. K. Jain, S. Shah, S. H. Friedman, J. Am. Chem. Soc. 2011, 133, 440–446.
- 156Y. Ji, J. Yang, L. Wu, L. Yu, X. Tang, Angew. Chem. Int. Ed. 2016, 55, 2152–2156; Angew. Chem. 2016, 128, 2192–2196.
- 157V. Mikat, A. Heckel, RNA 2007, 13, 2341–2347.
- 158J. M. Govan, D. D. Young, H. Lusic, Q. Liu, M. O. Lively, A. Deiters, Nucleic Acids Res. 2013, 41, 10518–10528.
- 159J. Krützfeldt, N. Rajewsky, R. Braich, K. G. Rajeev, T. Tuschl, M. Manoharan, M. Stoffel, Nature 2005, 438, 685–689.
- 160M.-L. Volvert, P.-P. Prévot, P. Close, S. Laguesse, S. Pirotte, J. Hemphill, F. Rogister, N. Kruzy, R. Sacheli, G. Moonen, A. Deiters, M. Merkenschlager, A. Chariot, B. Malgrange, J. D. Godin, L. Nguyen, Cell Rep. 2014, 7, 1168–1183.
- 161
- 161aT. Watanabe, T. Hoshida, J. Sakyo, M. Kishi, S. Tanabe, J. Matsuura, S. Akiyama, M. Nakata, Y. Tanabe, A. Z. Suzuki, S. Watanabe, T. Furuta, Org. Biomol. Chem. 2014, 12, 5089–5093;
- 161bS. Guha, J. Graf, B. Göricke, U. Diederichsen, J. Pept. Sci. 2013, 19, 415–422;
- 161cT. Stafforst, D. Hilvert, Angew. Chem. Int. Ed. 2010, 49, 9998–10001; Angew. Chem. 2010, 122, 10195–10198.
- 162J. Summerton, D. Weller, Antisense Nucleic Acid Drug Dev. 1997, 7, 187–195.
- 163J. S. Eisen, J. C. Smith, Development 2008, 135, 1735–1743.
- 164
- 164aI. A. Shestopalov, J. K. Chen, Methods Cell Biol. 2011, 104, 151–172;
- 164bA. Y. Payumo, L. E. McQuade, W. J. Walker, S. Yamazoe, J. K. Chen, Nat. Chem. Biol. 2016, 12, 694–701.
- 165S. Yamazoe, L. E. McQuade, J. K. Chen, ACS Chem. Biol. 2014, 9, 1985–1990.
- 166X. Tang, M. Su, L. Yu, C. Lv, J. Wang, Z. Li, Nucleic Acids Res. 2010 38, 3848–3855.
- 167
- 167aE. S. Weinberg, M. L. Allende, C. S. Kelly, A. Abdelhamid, T. Murakami, P. Andermann, O. G. Doerre, D. J. Grunwald, B. Riggleman, Development 1996, 122, 271;
- 167bS. L. Amacher, C. B. Kimmel, Development 1998, 125, 1397.
- 168D. P. Ferguson, E. E. Schmitt, J. T. Lightfoot, PLoS One 2013, 8, e 61472.
- 169A. Jain, M. Magistri, S. Napoli, G. M. Carbone, C. V. Catapano, Biochimie 2010, 92, 317–320.
- 170E. B. Schleifman, J. Y. Chin, P. M. Glazer in Chromosomal Mutagenesis (Eds.: ), Humana, Totowa, 2008, pp. 175–190.
10.1007/978-1-59745-232-8_13 Google Scholar
- 171N. Yang, S. Singh, R. I. Mahato, J. Controlled Release 2011, 155, 326–330.
- 172C. A. Kemme, D. Nguyen, A. Chattopadhyay, J. Iwahara, Transcription 2016, 7, 115–120.
- 173N. B. Struntz, D. A. Harki, ACS Chem. Biol. 2016, 11, 1631–1638.
- 174U. Kamensek, G. Sersa, S. Vidic, G. Tevz, S. Kranjc, M. Cemazar, Mol. Imaging Biol. 2011, 13, 43–52.
- 175C. M. Alberini, Physiol. Rev. 2009, 89, https://doi.org/10.1152/physrev.00017.02008.
- 176J. Hemphill, J. Govan, R. Uprety, M. Tsang, A. Deiters, J. Am. Chem. Soc. 2014, 136, 7152–7158.
- 177P. Vogel, M. F. Schneider, J. Wettengel, T. Stafforst, Angew. Chem. Int. Ed. 2014, 53, 6267–6271; Angew. Chem. 2014, 126, 6382–6386.
- 178A. Hanswillemenke, T. Kuzdere, P. Vogel, G. Jékely, T. Stafforst, J. Am. Chem. Soc. 2015, 137, 15875–15881.
- 179C. Huang, G. Wu, Y.-T. Yu, Nat. Protoc. 2012, 7, 789–800.
- 180X. Zhao, Y.-T. Yu, Nat. Methods 2008, 5, 95–100.
- 181P. Ordoukhanian, J.-S. Taylor, J. Am. Chem. Soc. 1995, 117, 9570–9571.
- 182D. Y. Zhang, E. Winfree, J. Am. Chem. Soc. 2009, 131, 17303–17314.
- 183J. Hemphill, A. Deiters, J. Am. Chem. Soc. 2013, 135, 10512–10518.
- 184
- 184aF. Huang, M. You, D. Han, X. Xiong, H. Liang, W. Tan, J. Am. Chem. Soc. 2013, 135, 7967–7973;
- 184bA. Prokup, J. Hemphill, Q. Liu, A. Deiters, ACS Synth. Biol. 2015, 4, 1064–1069.
- 185W. Tan, K. Wang, T. J. Drake, Curr. Opin. Chem. Biol. 2004, 8, 547–553.
- 186C. Wang, Z. Zhu, Y. Song, H. Lin, C. J. Yang, W. Tan, Chem. Commun. 2011, 47, 5708–5710.
- 187K. B. Joshi, A. Vlachos, V. Mikat, T. Deller, A. Heckel, Chem. Commun. 2012, 48, 2746–2748.
- 188L. Qiu, C. Wu, M. You, D. Han, T. Chen, G. Zhu, J. Jiang, R. Yu, W. Tan, J. Am. Chem. Soc. 2013, 135, 12952–12955.
- 189H. Sun, X. Zhu, P. Y. Lu, R. R. Rosato, W. Tan, Y. Zu, Mol. Ther. Nucleic Acids 2014, 3, e 182.
- 190Z. Tan, T. A. Feagin, J. M. Heemstra, J. Am. Chem. Soc. 2016, 138, 6328–6331.
- 191
- 191aA. Heckel, G. Mayer, J. Am. Chem. Soc. 2005, 127, 822–823;
- 191bA. Pinto, S. Lennarz, A. Rodrigues-Correia, A. Heckel, C. K. O'Sullivan, G. Mayer, ACS Chem. Biol. 2012, 7, 360–366;
- 191cG. Mayer, A. Lohberger, S. Butzen, M. Pofahl, M. Blind, A. Heckel, Bioorg. Med. Chem. Lett. 2009, 19, 6561–6564.
- 192
- 192aY. Li, J. Shi, Z. Luo, H. Jiang, X. Chen, F. Wang, X. Wu, Q. Guo, Bioorg. Med. Chem. Lett. 2009, 19, 5368–5371;
- 192bY. M. Li, J. Shi, R. Cai, X. Chen, Z. F. Luo, Q. X. Guo, J. Photochem. Photobiol. A 2010, 211, 129–134.
- 193Y. Kim, J. A. Phillips, H. Liu, H. Kang, W. Tan, Proc. Natl. Acad. Sci. USA 2009, 106, 6489–6494.
- 194M. C. R. Buff, F. Schäfer, B. Wulffen, J. Müller, B. Pötzsch, A. Heckel, G. Mayer, Nucleic Acids Res. 2010, 38, 2111–2118.
- 195A. Pinto, P. N. Polo, M. J. Rubio, M. Svobodova, T. M. Lerga, C. K. O'Sullivan in Nucleic Acid Aptamers: Selection, Characterization, and Application (Ed.: ), Springer, New York, 2016, pp. 171–177.
- 196L. Civit, A. Pinto, A. Rodrigues-Correia, A. Heckel, C. K. O'Sullivan, G. Mayer, Methods 2016, 97, 104–109.
- 197A. A. Fokina, D. A. Stetsenko, J.-C. François, Expert Opin. Biol. Ther. 2015, 15, 689–711.
- 198
- 198aJ. L. Richards, G. K. Seward, Y.-H. Wang, I. J. Dmochowski, ChemBioChem 2010, 11, 320–324;
- 198bH. Lusic, D. D. Young, M. O. Lively, A. Deiters, Org. Lett. 2007, 9, 1903–1906.
- 199K. Hwang, P. Wu, T. Kim, L. Lei, S. Tian, Y. Wang, Y. Lu, Angew. Chem. Int. Ed. 2014, 53, 13798–13802; Angew. Chem. 2014, 126, 14018–14022.
- 200X. Wang, M. Feng, L. Xiao, A. Tong, Y. Xiang, ACS Chem. Biol. 2016, 11, 444–451.
- 201
- 201aF. Ozsolak, P. M. Milos, Nat. Rev. Genet. 2011, 12, 87;
- 201bC. Y. Zhou, S. C. Alexander, N. K. Devaraj, Chem. Sci. 2017, 8, 7169–7173.
- 202A.-E. Saliba, A. J. Westermann, S. A. Gorski, J. Vogel, Nucleic Acids Res. 2014, 42, 8845–8860.
- 203D. Lovatt, B. K. Ruble, J. Lee, H. Dueck, T. K. Kim, S. Fisher, C. Francis, J. M. Spaethling, J. A. Wolf, M. S. Grady, A. V. Ulyanova, S. B. Yeldell, J. C. Griepenburg, P. T. Buckley, J. Kim, J.-Y. Sul, I. J. Dmochowski, J. Eberwine, Nat. Methods 2014, 11, 190–196.
- 204L. Donato, A. Mourot, C. M. Davenport, C. Herbivo, D. Warther, J. Léonard, F. Bolze, J.-F. Nicoud, R. H. Kramer, M. Goeldner, A. Specht, Angew. Chem. Int. Ed. 2012, 51, 1840–1843; Angew. Chem. 2012, 124, 1876–1879.
- 205M. A. H. Fichte, X. M. M. Weyel, S. Junek, F. Schäfer, C. Herbivo, M. Goeldner, A. Specht, J. Wachtveitl, A. Heckel, Angew. Chem. Int. Ed. 2016, 55, 8948–8952; Angew. Chem. 2016, 128, 9094–9098.
- 206
- 206aR. K. P. Benninger, D. W. Piston, Current protocols in cell biology/ editorial board, Juan S. Bonifacino. [et al.] 2013, 0 4, Unit-4.1124;
- 206bM. J. Miller, S. H. Wei, I. Parker, M. D. Cahalan, Science 2002, 296, 1869;
- 206cL. Belluscio in Current Protocols in Neuroscience, Wiley, Chichester, 2001.
- 207F. Wang, X. Liu, I. Willner, Angew. Chem. Int. Ed. 2015, 54, 1098–1129; Angew. Chem. 2015, 127, 1112–1144.
- 208
- 208aH. Kashida, T. Doi, T. Sakakibara, T. Hayashi, H. Asanuma, J. Am. Chem. Soc. 2013, 135, 7960–7966;
- 208bH. Kawai, K. Murayama, H. Kashida, H. Asanuma, Chem. Eur. J. 2016, 22, 10533–10538;
- 208cT. Sakamoto, K. Fujimoto in Modified Nucleic Acids, Springer, Cham, 2016, pp. 145–157.
10.1007/978-3-319-27111-8_7 Google Scholar
- 209
- 209aT. Goldau, K. Murayama, C. Brieke, H. Asanuma, A. Heckel, Chem. Eur. J. 2015, 21, 17870–17876;
- 209bT. Goldau, K. Murayama, C. Brieke, S. Steinwand, P. Mondal, M. Biswas, I. Burghardt, J. Wachtveitl, H. Asanuma, A. Heckel, Chem. Eur. J. 2015, 21, 2845–2854;
- 209cH. Ito, X. Liang, H. Nishioka, H. Asanuma, Org. Biomol. Chem. 2010, 8, 5519–5524;
- 209dH. Nishioka, X. Liang, H. Asanuma, Chem. Eur. J. 2010, 16, 2054–2062;
- 209eY. Nakasone, H. Ooi, Y. Kamiya, H. Asanuma, M. Terazima, J. Am. Chem. Soc. 2016, 138, 9001–9004.
- 210
- 210aM. Zhou, X. Liang, T. Mochizuki, H. Asanuma, Angew. Chem. Int. Ed. 2010, 49, 2167–2170; Angew. Chem. 2010, 122, 2213–2216;
- 210bX. Liang, M. Zhou, K. Kato, H. Asanuma, ACS Synth. Biol. 2013, 2, 194–202.
- 211H. Cahová, A. Jäschke, Angew. Chem. Int. Ed. 2013, 52, 3186–3190; Angew. Chem. 2013, 125, 3268–3272.
- 212S. Ogasawara, ChemBioChem 2014, 15, 2652–2655.
- 213S. Ogasawara, ACS Chem. Biol. 2017, 12, 351–356.
- 214R. Schmidt, D. Geissler, V. Hagen, J. Bendig, J. Phys. Chem. A 2007, 111, 5768–5774.
- 215A. Momotake, N. Lindegger, E. Niggli, R. J. Barsotti, G. C. Ellis-Davies, Nat. Methods 2006, 3, 35–40.
- 216L. Fournier, I. Aujard, T. Le Saux, S. Maurin, S. Beaupierre, J. B. Baudin, L. Jullien, Chemistry 2013, 19, 17494–17507.
- 217J. P. Olson, H.-B. Kwon, K. T. Takasaki, C. Q. Chiu, M. J. Higley, B. L. Sabatini, G. C. R. Ellis-Davies, J. Am. Chem. Soc. 2013, 135, 5954–5957.
- 218T. A. Shell, D. S. Lawrence, Acc. Chem. Res. 2015, 48, 2866–2874.
- 219T. A. Shell, J. R. Shell, Z. L. Rodgers, D. S. Lawrence, Angew. Chem. Int. Ed. 2014, 53, 875–878; Angew. Chem. 2014, 126, 894–897.
- 220W. J. Smith, N. P. Oien, R. M. Hughes, C. M. Marvin, Z. L. Rodgers, J. Lee, D. S. Lawrence, Angew. Chem. Int. Ed. 2014, 53, 10945–10948; Angew. Chem. 2014, 126, 11125–11128.
- 221A. Atilgan, E. T. Ecik, R. Guliyev, T. B. Uyar, S. Erbas-Cakmak, E. U. Akkaya, Angew. Chem. Int. Ed. 2014, 53, 10678–10681; Angew. Chem. 2014, 126, 10854–10857.
- 222D. Arian, L. Kovbasyuk, A. Mokhir, J. Am. Chem. Soc. 2011, 133, 3972–3980.
- 223A. Meyer, M. Schikora, A. Mokhir, Chem. Commun. 2015, 51, 13324–13326.
- 224S. G. König, A. Mokhir, Bioorg. Med. Chem. Lett. 2013, 23, 6544–6548.
- 225A. Meyer, A. Mokhir, Angew. Chem. Int. Ed. 2014, 53, 12840–12843; Angew. Chem. 2014, 126, 13054–13057.
- 226M. A. Sgambellone, A. David, R. N. Garner, K. R. Dunbar, C. Turro, J. Am. Chem. Soc. 2013, 135, 11274–11282.
- 227J. P. Olson, M. R. Banghart, B. L. Sabatini, G. C. R. Ellis-Davies, J. Am. Chem. Soc. 2013, 135, 15948–15954.
Citing Literature
March 5, 2018
Pages 2768-2798