Reagent- and Metal-Free Anodic C−C Cross-Coupling of Aniline Derivatives
Lara Schulz
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorMathias Enders
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Bernd Elsler
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Dieter Schollmeyer
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Katrin M. Dyballa
Evonik Performance Materials GmbH, Paul-Baumann-Strasse 1, 45772 Marl, Germany
Search for more papers by this authorProf. Dr. Robert Franke
Evonik Performance Materials GmbH, Paul-Baumann-Strasse 1, 45772 Marl, Germany
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Siegfried R. Waldvogel
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorLara Schulz
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorMathias Enders
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Bernd Elsler
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Dieter Schollmeyer
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorDr. Katrin M. Dyballa
Evonik Performance Materials GmbH, Paul-Baumann-Strasse 1, 45772 Marl, Germany
Search for more papers by this authorProf. Dr. Robert Franke
Evonik Performance Materials GmbH, Paul-Baumann-Strasse 1, 45772 Marl, Germany
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
Search for more papers by this authorCorresponding Author
Prof. Dr. Siegfried R. Waldvogel
Institut für Organische Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10–14, 55128 Mainz, Germany
Search for more papers by this authorGraphical Abstract
Cross-couplings under electrochemical conditions selectively provide protected 2,2′-diaminobiaryl derivatives. For clean conversion, 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and glassy carbon should be used as the electrolyte and anode material, respectively. Easily removable protecting groups enable the stepwise and selective liberation of the amine functional groups.
Abstract
The dehydrogenative cross-coupling of aniline derivatives to 2,2′-diaminobiaryls is reported. The oxidation is carried out electrochemically, which avoids the use of metals and reagents. A large variety of biphenyldiamines were thus prepared. The best results were obtained when glassy carbon was used as the anode material. The electrosynthetic reaction is easily performed in an undivided cell at slightly elevated temperature. In addition, common amine protecting groups based on carboxylic acids were employed that can be selectively removed under mild conditions after the cross-coupling, which provides quick and efficient access to important building blocks featuring free amine moieties.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie201612613-sup-0001-misc_information.pdf3 MB | Supplementary |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Bringmann, A. J. Mortimer, P. A. Keller, M. J. Gresser, J. Garner, M. Breuning, Angew. Chem. Int. Ed. 2005, 44, 5384–5427; Angew. Chem. 2005, 117, 5518–5563;
- 1bK. C. Nicolaou, P. G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 2005, 44, 4442–4489; Angew. Chem. 2005, 117, 4516–4563;
- 1cA. Zapf, M. Beller, Top. Catal. 2002, 19, 101–109.
- 2J. Wang, H. Li, W. Duan, L. Zu, W. Wang, Org. Lett. 2005, 7, 4713–4716.
- 3R. K. Rao, A. B. Naidu, E. A. Jaseer, G. Sekar, Tetrahedron 2009, 65, 4619–4624.
- 4
- 4aK. Kabuto, T. Yoshida, S. Yamaguchi, S. Miyano, H. Hashimoto, J. Org. Chem. 1985, 50, 3013–3015;
- 4bF.-Y. Zhang, C.-C. Pai, A. S. C. Chan, J. Am. Chem. Soc. 1998, 120, 5808–5809.
- 5K.-H. Jung, H.-K. Kim, G. H. Lee, D.-S. Kang, J.-A. Park, K. M. Kim, Y. Chang, T.-J. Kim, J. Med. Chem. 2011, 54, 5385–5394.
- 6H. Letheby, J. Chem. Soc. 1862, 15, 161.
10.1039/JS8621500161 Google Scholar
- 7W. Kalk, H.-S. Bien, K.-H. Schündehütte, Justus Liebigs Ann. Chem. 1977, 329–337.
10.1002/jlac.197719770213 Google Scholar
- 8M. Smrcina, S. Vyskocil, B. Maca, M. Polasek, T. A. Claxton, A. P. Abbott, P. Kocovsky, J. Org. Chem. 1994, 59, 2156–2163.
- 9
- 9aB.-Y. Lim, M.-K. Choi, C.-G. Cho, Tetrahedron Lett. 2011, 52, 6015–6017;
- 9bH.-Y. Kim, W.-J. Lee, H.-M. Kang, C.-G. Cho, Org. Lett. 2007, 9, 3185–3186;
- 9cH.-M. Kang, Y.-K. Lim, I.-J. Shin, H.-Y. Kim, C.-G. Cho, Org. Lett. 2006, 8, 2047–2050;
- 9dS. E. Suh, I.-K. Park, B.-Y. Lim, C.-G. Cho, Eur. J. Org. Chem. 2011, 455–457;
- 9eY.-K. Lim, J.-W. Jung, H. Lee, C.-G. Cho, J. Org. Chem. 2004, 69, 5778–5781;
- 9fG.-Q. Li, H. Gao, C. Keene, M. Devonas, D. H. Ess, L. Kürti, J. Am. Chem. Soc. 2013, 135, 7414–7417.
- 10T. Gieshoff, D. Schollmeyer, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 9437–9440; Angew. Chem. 2016, 128, 9587–9590.
- 11
- 11aS. Lips, A. Wiebe, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 10872–10876; Angew. Chem. 2016, 128, 11031–11035;
- 11bN. Y. More, M. Jeganmohan, Org. Lett. 2015, 17, 3042–3045;
- 11cT. Morofuji, A. Shimizu, J.-i. Yoshida, Angew. Chem. Int. Ed. 2012, 51, 7259–7262; Angew. Chem. 2012, 124, 7371–7374;
- 11dA. Libman, H. Shalit, Y. Vainer, S. Narute, S. Kozuch, D. Pappo, J. Am. Chem. Soc. 2015, 137, 11453–11460;
- 11eY. E. Lee, T. Cao, C. Torruellas, M. C. Kozlowski, J. Am. Chem. Soc. 2014, 136, 6782–6785.
- 12B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2014, 53, 5210–5213; Angew. Chem. 2014, 126, 5311–5314.
- 13R. F. Fritsche, G. Theumer, O. Kataeva, H.-J. Knölker, Angew. Chem. Int. Ed. 2017, 56, 553–557; Angew. Chem. 2017, 129, 564–568.
- 14E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2, 302–308.
- 15H. J. Schäfer, C. R. Chim. 2011, 14, 745–765.
- 16A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Angew. Chem. Int. Ed. 2016, 55, 11801–11805; Angew. Chem. 2016, 128, 11979–11983.
- 17B. Riehl, K. M. Dyballa, R. Franke, S. R. Waldvogel, Synthesis 2017, 252–259.
- 18A. Kirste, B. Elsler, G. Schnakenburg, S. R. Waldvogel, J. Am. Chem. Soc. 2012, 134, 3571–3576.
- 19M. Ito, H. Kubo, I. Itani, K. Morimoto, T. Dohi, Y. Kita, J. Am. Chem. Soc. 2013, 135, 14078–14081.
- 20
- 20aK. Morimoto, K. Sakamoto, Y. Ohnishi, T. Miyamoto, M. Ito, T. Dohi, Y. Kita, Chem. Eur. J. 2013, 19, 8726–8731;
- 20bR. Samanta, J. Lategahn, A. P. Antonchick, Chem. Commun. 2012, 48, 3194–3196.
- 21
- 21aR. Francke, D. Cericola, R. Kötz, D. Weingarth, S. R. Waldvogel, Electrochim. Acta 2012, 62, 372–380;
- 21bO. Hollóczki, A. Berkessel, J. Mars, M. Mezger, A. Wiebe, S. R. Waldvogel, B. Kirchner, ACS Catal. 2017, 7, 1846–1852.
- 22B. Elsler, A. Wiebe, D. Schollmeyer, K. M. Dyballa, R. Franke, S. R. Waldvogel, Chem. Eur. J. 2015, 21, 12321–12325.
- 23C. Gütz, B. Klöckner, S. R. Waldvogel, Org. Process Res. Dev. 2016, 20, 26–32.
- 24D. M. Mohilner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc. 1962, 84, 3618–3622.
- 25J. A. Souto, C. Martínez, I. Velilla, K. Muñiz, Angew. Chem. Int. Ed. 2013, 52, 1324–1328; Angew. Chem. 2013, 125, 1363–1367.
- 26F. G. Bordwell, D. J. Algrim, J. Org. Chem. 1976, 41, 2507–2508.
- 27
- 27aT. Kinzel, Y. Zhang, S. I. Buchwald, J. Am. Chem. Soc. 2010, 132, 14073–14075;
- 27bY. Yang, S. K. Seidlits, M. M. Adams, V. M. Lynch, C. E. Schmidt, E. V. Anslyn, J. B. Shear, J. Am. Chem. Soc. 2010, 132, 13114–13116;
- 27cS. Handa, L. M. Slaughter, Angew. Chem. Int. Ed. 2012, 51, 2912–2915; Angew. Chem. 2012, 124, 2966–2969.
- 28P. G. M. Wuts, T. W. Greene, Protective Groups in Organic Synthesis, 4th ed., Wiley, Hoboken, 2007.
- 29C. Zinelaabidine, O. Souad, J. Zoubir, B. Malika, A. Nour-Eddine, Int. J. Chem. 2012, 4, 73–79.