The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
Dr. Dipan Kundu
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorElahe Talaie
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorDr. Victor Duffort
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Linda F. Nazar
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)Search for more papers by this authorDr. Dipan Kundu
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorElahe Talaie
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorDr. Victor Duffort
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
These authors contributed equally to this work.
Search for more papers by this authorCorresponding Author
Prof. Linda F. Nazar
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)
Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1 (Canada)Search for more papers by this authorGraphical Abstract
Below lithium: Concerns over the future cost and sustainability of resources of lithium has led to a global trend to develop low-cost sodium-ion batteries. Central to this has been the fast-developing field of non-aqueous batteries that could employ a plethora of materials for the positive and negative electrodes, and electrolytes. Apart from sustainability, they offer structural and electrochemical benefits compared to their Li analogues.
Abstract
Energy storage technology has received significant attention for portable electronic devices, electric vehicle propulsion, bulk electricity storage at power stations, and load leveling of renewable sources, such as solar energy and wind power. Lithium ion batteries have dominated most of the first two applications. For the last two cases, however, moving beyond lithium batteries to the element that lies below—sodium—is a sensible step that offers sustainability and cost-effectiveness. This requires an evaluation of the science underpinning these devices, including the discovery of new materials, their electrochemistry, and an increased understanding of ion mobility based on computational methods. The Review considers some of the current scientific issues underpinning sodium ion batteries.
References
- 1J. M. Tarascon, M. Armand, Nature 2001, 414, 359–367.
- 2F. Risacher, B. Fritz, Aquat. Geochem. 2009, 15, 123–157.
- 3A. Yaksic, J. E. Tilton, Resour. Policy 2009, 34, 185–194.
- 4S. Fletcher, Bottled Lightning: Superbatteries, Electric Cars, and the New Lithium Economy, Hill and Wang, New York, 2012.
- 5Y.-F. Y. Yao, J. T. Kummer, J. Inorg. Nucl. Chem. 1967, 29, 2453–2459.
- 6J. B. Goodenough, H. Y.-P. Hong, J. A. Kafalas, Mater. Res. Bull. 1976, 11, 203–220.
- 7Ceramatec, Inc. WO2012061823A2, patent application, 2012.
- 8A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 2012, 3, 856.
- 9V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, T. Rojo, Energy Environ. Sci. 2012, 5, 5884–5901; V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M. H. Han, T. Rojo, Energy Environ. Sci. 2013, 6, 2312–2337.
- 10S. W. Ki, D.-H. Seo, X. Ma, G. Ceder, K. Kang, Adv. Energy Mater. 2012, 2, 710–721.
- 11H. Pan, Y. S. Hu, L. Chen, Energy Environ. Sci. 2013, 6, 2338–2360.
- 12M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Adv. Funct. Mater. 2013, 23, 947–958.
- 13H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, Chem. Rev. 2014, 114, 11788–11827.
- 14H. Böhm, G. Beyermann, J. Power Sources 1999, 84, 270–274.
- 15R. C. Galloway, S. Haslam, J. Power Sources 1999, 80, 164–170.
- 16T. Javadi, A. Petric, J. Electrochem. Soc. 2011, 158, A 700–A704.
- 17T. M. O. Sullivan, C. M. Bingham, R. E. Clark, International Symposium on Power Electronics, Electric Drives, Automation and Motion, 2006, pp. 34–36.
- 18A. van Zyl, Solid State Ionics 1996, 86, 883–889.
- 19D. J. L. Brett, P. Aguiar, N. P. Brandon, J. Power Sources 2006, 163, 514–522.
- 20M. S. Whittingham, Prog. Solid State Chem. 1978, 12, 41–99.
- 21A. S. Nagelberg, W. L. Worrell, J. Solid State Chem. 1979, 29, 345–354.
- 22T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta 1993, 38, 1159–1167.
- 23K. Ozawa, Solid State Ionics 1994, 69, 212–216.
- 24R. Yazami, N. Lebrun, M. Bonneau, M. Molteni, J. Power Sources 1995, 54, 389–392.
- 25T. Ohzuku, Y. Makimura, Chem. Lett. 2001, 8, 744–745.
10.1246/cl.2001.744 Google Scholar
- 26R. Berthelot, D. Carlier, C. Delmas, Nat. Mater. 2011, 10, 74–80.
- 27D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, et al., Dalton Trans. 2011, 40, 9306–9312.
- 28J.-P. Parant, R. Olazcuaga, M. Devalette, C. Fouassier, J. Solid State Chem. 1971, 3, 1–11.
- 29A. Mendiboure, C. Delmas, P. Hagenmuller, J. Solid State Chem. 1985, 57, 323–331.
- 30O. I. Velikokhatnyi, C.-C. Chang, P. N. Kumta, J. Electrochem. Soc. 2003, 150, A 1262–1266.
- 31X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc. 2011, 158, A 1307–1311.
- 32N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 2012, 11, 512–517.
- 33Ref. [26].
- 34H. Tomita, K. Kubota, R. Kanno, J. Power Sources 2011, 196, 6809–6814.
- 35J. Xu, D. H. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q. Yang, C. P. Grey, Y. S. Meng, Chem. Mater. 2014, 26, 1260–1269.
- 36N. Yabuuchi, R. Hara, M. Kajiyama, K. Kubota, T. Ishigaki, A. Hoshikawa, S. Komaba, Adv. Energy Mater. 2014, 4, 1301453.
- 37
- 37aY.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C. Seung Yoon, S.-T. Myung, K. Amine, Nat. Mater. 2012, 11, 942–947;
- 37bD. Wang, I. Belharouak, G. Zhou, K. Amine, Adv. Funct. Mater. 2013, 23, 1070–1075.
- 38D. Mohanty, A. Huq, E. A. Payzant, A. S. Sefat, J. Li, D. P. Abraham, D. L. Wood, C. Daniel, Chem. Mater. 2013, 25, 4064–4070.
- 39J. Billaud, G. Singh, A. R. Armstrong, E. Gonzalo, V. Roddatis, M. Armand, T. Rojo, P. G. Bruce, Energy Environ. Sci. 2014, 7, 1387–1391.
- 40N. Yabuuchi, R. Hara, K. Kubota, J. Paulsen, S. Kumakura, S. Komaba, J. Mater. Chem. A 2014, 2, 16851–16855.
- 41S. LeVine, The Powerhouse: Inside the Invention of a Battery to Save the World, Viking Adult, Penguin Random House, Canada, 2015.
- 42D. Kim, E. Lee, M. Slater, W. Lu, S. Rood, C. S. Johnson, Electrochem. Commun. 2012, 18, 66–69.
- 43X. Wang, G. Liu, T. Iwao, M. Okubo, A. Yamada, J. Phys. Chem. C 2014, 118, 2970–2976.
- 44Z. Lu, J. R. Dahn, Chem. Mater. 2001, 13, 1252–1257.
- 45D. Buchholz, L. G. Chagas, C. Vaalma, L. Wu, S. Passerini, J. Mater. Chem. A 2014, 2, 13415–13421.
- 46M. Sathiya, K. Hemalatha, K. Ramesha, J. M. Tarascon, A. S. Prakash, Chem. Mater. 2012, 24, 1846–1853.
- 47E. Talaie, V. Duffort, L. F. Nazar, submitted.
- 48P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Chem. Mater. 2010, 22, 4126–4128.
- 49P. P. Prosini, C. Centoa, A. Masci, M. Carewska, Solid State Ionics 2014, 263, 1–8.
- 50K. T. Lee, T. N. Ramesh, F. Nan, G. Botton, L. F. Nazar, Chem. Mater. 2011, 23, 3593–3600.
- 51S. M. Oh, S. T. Myung, J. Hassoun, B. Scrosati, Y. K. Sun, Electrochem. Commun. 2012, 22, 149–152.
- 52J. Lu, S. C. Chung, S. Nishimura, A. Yamada, Chem. Mater. 2013, 25, 4557–4565.
- 53R. Tripathi, S. M. Wood, M. S. Islam, L. F. Nazar, Energy Environ. Sci. 2013, 6, 2257–2265.
- 54H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 2014, 334, 1252817-1–1252817-7.
- 55X. Zhang, M. van Hulzen, D. P. Singh, A. Brownrigg, J. P. Wright, N. H. van Dijk, M. Wagemaker, Nano Lett. 2014, 14, 2279–2285.
- 56K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya, Adv. Energy Mater. 2013, 3, 444–450.
- 57C. Zhu, K. Song, P. A. van Aken, J. Maier, Y. Yu, Nano Lett. 2014, 14, 2175–2180.
- 58J. Liu, K. Tang, K. Song, P. A. van Aken, Y. Yu, J. Maier, Nanoscale 2014, 6, 5081–5086.
- 59R. A. Shakoor, D. H. Seo, H. Kim, Y. U. Park, J. Kim, S. W. Kim, H. Gwon, S. Leec, K. Kang, J. Mater. Chem. 2012, 22, 20535–20541.
- 60W. Song, X. Ji, Z. Wu, Y. Zhu, F. Li, Y. Yao, C. E. Banks, RSC Adv. 2014, 4, 11375–11383.
- 61B. L. Ellis, W. R. M. Makhanouk, Y. Makimura, K. Toughilland, L. F. Nazar, Nat. Mater. 2007, 6, 749–753.
- 62Y. U. Park, D. H. Seo, H. S. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H. I. Yoo, K. Kang, J. Am. Chem. Soc. 2013, 135, 13870–13878.
- 63N. Recham, J.-N. Chotard, L. Dupont, K. Djellab, M. Armand, J- ;M. Tarascon, J. Electrochem. Soc. 2009, 156, A 993–A999.
- 64Y. Kawabe, N. Yabuuchi, M. Kajiyama, N. Fukuhara, T. Inamasu, R. Okuyama, I. Nakai, S. Komaba, Electrochem. Commun. 2011, 13, 1225–1228.
- 65B. Ellis, D. H. Ryan, L. F. Nazar, Chem. Mater. 2010, 22, 1059–1070.
- 66P. Barpanda, G. Liu, C. D. Ling, M. Tamaru, M. Avdeev, S. C. Chung, Y. Yamada, A. Yamada, Chem. Mater. 2013, 25, 3480–3487.
- 67P. Barpanda, T. Ye, M. Avdeev, S. C. Chunga, A. Yamada, J. Mater. Chem. A 2013, 1, 4194–4197.
- 68P. Barpanda, J. Lu, T. Ye, M. Kajiyama, S. C. Chung, N. Yabuuchi, S. Komaba, A. Yamada, RSC Adv. 2013, 3, 3857–3860.
- 69J. Pizarro-Sanz, J. Dance, G. Villeneuve, M. Arriortua-Marcaida, Mater. Lett. 1994, 18, 327–332.
- 70R. Tripathi, T. N. Ramesh, B. L. Ellis, L. F. Nazar, Angew. Chem. Int. Ed. 2010, 49, 8738–8742; Angew. Chem. 2010, 122, 8920–8924.
- 71P. Barpanda, J.-N. Chotard, N. Recham, C. Delacourt, M. Ati, L. Dupont, M. Armand, J.-M. Tarascon, Inorg. Chem. 2010, 49, 7401–7408.
- 72R. Tripathi, G. R. Gardiner, M. S. Islam, L. F. Nazar, Chem. Mater. 2011, 23, 2278–2288.
- 73M. Reynaud, G. Rousse, A. M. Abakumov, M. T. Sougrati, G. V. Tendeloo, J. N. Chotarda, J. M. Tarascon, J. Mater. Chem. A 2014, 2, 2671–2680.
- 74P. Barpanda, G. Oyama, C. D. Ling, A. Yamada, Chem. Mater. 2014, 26, 1297–1299.
- 75P. Barpanda, G. Oyama, S. Nishimura, S. C. Chung, A. Yamada, Nat. Commun. 2014, 5, 4358.
- 76J. Liu, D. Chang, P. Whitfield, Y. Janssen, X. Yu, Y. Zhou, J. Bai, J. Ko, K. W. Nam, L. Wu, Y. Zhu, M. Feygenson, G. Amatucci, A. V. Ven, X. Q. Yang, P. Khalifah, Chem. Mater. 2014, 26, 3295–3305.
- 77H. Chen, Q. Hao, O. Zivkovic, G. Hautier, L. S. Du, Y. Tang, Y. Y. Hu, X. Ma, C. P. Grey, G. Ceder, Chem. Mater. 2013, 25, 2777–2786.
- 78W. Huang, J. Zhou, B. Li, J. Ma, S. Tao, D. Xia, W. Chu, Z. Wu, Sci. Rep. 2014, 4, 1–8.
- 79H. J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 1977, 16, 2704–2709.
- 80Y. Lu, L. Wang, J. Cheng, J. B. Goodenough, Chem. Commun. 2012, 48, 6544–6546.
- 81H. Lee, Y.-I. Kim, J.-K. Park, J. W. Choi, Chem. Commun. 2012, 48, 8416–8418.
- 82
- 82aT. Matsuda, M. Takachi, Y. Moritomo, Chem. Commun. 2013, 49, 2750–2752;
- 82bM. Takachi, T. Matsuda, Y. Moritomo, Jpn. J. Appl. Phys. 2013, 52, 090202.
- 83Y. Yue, A. J. Binder, G. Guo, A. Zhang, Z.-A. Qiao, C. Tian, S. Dai, Angew. Chem. Int. Ed. 2014, 53, 3134–3137; Angew. Chem. 2014, 126, 3198–3201.
- 84L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J. B. Goodenough, Angew. Chem. Int. Ed. 2013, 52, 1964–1969; Angew. Chem. 2013, 125, 2018–2021.
- 85X. Wu, W. Deng, J. Qian, Y. Cao, X. Ai, H. Yang, J. Mater. Chem. A 2013, 1, 10130.
- 86Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, Energy Environ. Sci. 2014, 7, 1643–1647.
- 87H.-W. Lee, R. Y. Wang, M. Pasta, S. W. Lee, N. Liu, Y. Cui, Nat. Commun. 2014, 5, 5280.
- 88M. S. Islam, C. A. J. Fisher, Chem. Soc. Rev. 2014, 43, 185–204.
- 89S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 2011, 4, 3680.
- 90H. Kim, D. J. Kim, D.-H. Seo, M. S. Yeom, K. Kang, D. K. Kim, Y. Jung, Chem. Mater. 2012, 24, 1205–1211.
- 91D. H. Lee, J. Xu, Y. S. Meng, Phys. Chem. Chem. Phys. 2013, 15, 3304–3312.
- 92Y. Hinuma, Y. S. Meng, G. Ceder, Phys. Rev. B 2008, 77, 224111.
- 93Y. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2014, 26, 5208–5214.
- 94Ref. [53].
- 95J. M. Clark, P. Barpanda, A. Yamada, M. Saiful Islam, J. Mater. Chem. A 2014, 2, 11807–11812.
- 96I. A. Udod, H. B. Orman, V. K. Genchel, Carbon 1994, 32, 101–106.
- 97M. M. Doeff, Y. Ma, S. J. Visco, L. C. De Jonghe, J. Electrochem. Soc. 1993, 140, L169–L170.
- 98
- 98aD. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 1271–1273;
- 98bD. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A 803.
- 99S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, K. Fujiwara, Adv. Funct. Mater. 2011, 21, 3859–3867.
- 100R. C. Asher, J. Inorg. Nucl. Chem. 1959, 10, 238–249.
- 101P. Ge, M. Fouletier, Solid State Ionics 1988, 28–30, 1172–1175.
- 102S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, Y. Ohsawa, ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.
- 103S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Energy Environ. Sci. 2011, 4, 3342–3348.
- 104Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, C. Wang, Nat. Commun. 2014, 5, 4033.
- 105Y.-X. Wang, S.-L. Chou, H.-K. Liu, S.-X. Dou, Carbon 2013, 57, 202–208.
- 106S. I. Park, I. Gocheva, S. Okada, J. Yamaki, J. Electrochem. Soc. 2011, 158, A 1067.
- 107C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saadoune, J. Darriet, C. Delmas, Electrochem. Solid-State Lett. 2011, 14, A 75–A78.
- 108M. Guignard, C. Didier, J. Darriet, P. Bordet, E. Elkaïm, C. Delmas, Nat. Mater. 2013, 12, 74–80.
- 109H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2011, 2, 2560–2565.
- 110P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M. R. Palacín, Chem. Mater. 2011, 23, 4109–4111.
- 111W. Wang, C. Yu, Z. Lin, J. Hou, H. Zhu, S. Jiao, Nanoscale 2013, 5, 594–599.
- 112A. Rudola, K. Saravanan, C. W. Mason, P. Balaya, J. Mater. Chem. A 2013, 1, 2653–2662.
- 113B. Guo, X. Yu, X.-G. Sun, M. Chi, Z.-A. Qiao, J. Liu, Y.-S. Hu, X.-Q. Yang, J. B. Goodenough, S. Dai, Energy Environ. Sci. 2014, 7, 2220–2226.
- 114Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao, Y.-S. Hu, H. Li, X.-Q. Yang, L. Chen, X. Huang, Nat. Commun. 2013, 4, 2365.
- 115R. Fielden, M. N. Obrovac, J. Electrochem. Soc. 2014, 161, A 1158–A1163.
- 116V. L. Chevrier, G. Ceder, J. Electrochem. Soc. 2011, 158, A 1011–A1014.
- 117S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, S. Kuze, Electrochem. Commun. 2012, 21, 65–68.
- 118L. D. Ellis, B. N. Wilkes, T. D. Hatchard, M. N. Obrovac, J. Electrochem. Soc. 2014, 161, A 416–A421.
- 119T. T. Tran, M. N. Obrovac, J. Electrochem. Soc. 2011, 158, A 1411–A1416.
- 120J. W. Wang, X. H. Liu, S. X. Mao, J. Y. Huang, Nano Lett. 2012, 12, 5897–5902.
- 121L. D. Ellis, T. D. Hatchard, M. N. Obrovac, J. Electrochem. Soc. 2012, 159, A 1801–A1805.
- 122Z. Du, R. A. Dunlap, M. N. Obrovac, J. Alloys Compd. 2014, 617, 271–276.
- 123A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, L. Monconduit, J. Am. Chem. Soc. 2012, 134, 20805–20811.
- 124J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, Angew. Chem. Int. Ed. 2013, 52, 4633–4636; Angew. Chem. 2013, 125, 4731–4734.
- 125Ref. [8].
- 126T. D. Hatchard, M. N. Obrovac, J. Electrochem. Soc. 2014, 161, A 1748–A1752.
- 127A. Ponrouch, R. Dedryvere, D. Monti, A. E. Demet, J. M. Ateba Mba, L. Croguennec, C. Masquelier, P. Johansson, M. R. Palacin, Energy Environ. Sci. 2013, 6, 2361–2369.
- 128Ref. [99].
- 129Ref. [102].
- 130A. Bhide, J. Hofmann, A. K. Durr, J. Janek, P. Adelhelm, Phys. Chem. Chem. Phys. 2014, 16, 1987–1998.
- 131A. Ponrouch, E. Marchante, M. Courty, J.-M. Tarascon, M. R. Palacin, Energy Environ. Sci. 2012, 5, 8572–8583.
- 132J. M. Tarascon, D. Guyomard, Solid State Ionics 1994, 69, 293–305.
- 133J. Zhao, L. Zhao, K. Chihara, S. Okada, J.-i. Yamaki, S. Matsumoto, S. Kuze, K. Nakane, J. Power Sources 2013, 244, 752–757.
- 134Ref. [117].
- 135Ref. [123].
- 136Ref. [124].
- 137A. Fukunaga, T. Nohira, R. Hagiwara, K. Numata, E. Itani, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources 2014, 246, 387–391.
- 138S. A. Mohd Noor, P. C. Howlett, D. R. MacFarlane, M. Forsyth, Electrochim. Acta 2013, 114, 766–771.
- 139H. Yoon, H. Zhu, A. Hervault, M. Armand, D. R. MacFarlane, M. Forsyth, Phys. Chem. Chem. Phys. 2014, 16, 12350–12355.
- 140C. Ding, T. Nohira, K. Kuroda, R. Hagiwara, A. Fukunaga, S. Sakai, K. Nitta, S. Inazawa, J. Power Sources 2013, 238, 296–300.
- 141N. Wongittharom, T.-C. Lee, C.-H. Wang, Y.-C. Wang, J.-K. Chang, J. Mater. Chem. A 2014, 2, 5655–5661.
- 142L. G. Chagas, D. Buchholz, L. Wu, B. Vortmann, S. Passerini, J. Power Sources 2014, 247, 377–383.
- 143D. Monti, E. Jónsson, M. R. Palacín, P. Johansson, J. Power Sources 2014, 245, 630–636.