Self-Host Blue-Emitting Iridium Dendrimer with Carbazole Dendrons: Nondoped Phosphorescent Organic Light-Emitting Diodes†
Debin Xia
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorBin Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorBo Chen
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
University of the Chinese Academy of Sciences, Beijing 100049 (P. R. China)
Search for more papers by this authorShumeng Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
University of the Chinese Academy of Sciences, Beijing 100049 (P. R. China)
Search for more papers by this authorDr. Baohua Zhang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorCorresponding Author
Dr. Junqiao Ding
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)Search for more papers by this authorCorresponding Author
Prof. Lixiang Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)Search for more papers by this authorProf. Xiabin Jing
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorProf. Fosong Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorDebin Xia
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorBin Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
These authors contributed equally to this work.
Search for more papers by this authorBo Chen
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
University of the Chinese Academy of Sciences, Beijing 100049 (P. R. China)
Search for more papers by this authorShumeng Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
University of the Chinese Academy of Sciences, Beijing 100049 (P. R. China)
Search for more papers by this authorDr. Baohua Zhang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorCorresponding Author
Dr. Junqiao Ding
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)Search for more papers by this authorCorresponding Author
Prof. Lixiang Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)Search for more papers by this authorProf. Xiabin Jing
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorProf. Fosong Wang
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (P. R. China)
Search for more papers by this authorWe are grateful to the 973 Project (2009CB623601 and 2009CB930603), National Natural Science Foundation of China (Nos. 20923003, 21174144 and 21074130), and Science Fund for Creative Research Groups (No. 20921061) for financial support of this research.
Graphical Abstract
Out of the blue: The title dendrimer has been developed by covalently attaching a second-generation carbazole dendron to an emissive tris[2-(2,4-difluorophenyl)-pyridyl]iridium(III) core through a nonconjugated linker to form an efficient self-host system (see figure). Unlike small molecular phosphors and other phosphorescent dendrimers known to date, the nondoped phosphorescent organic light-emitting diodes herein are realized without a loss in efficiency.
Abstract
A blue-emitting iridium dendrimer, namely B-G2, has been successfully designed and synthesized with a second-generation oligocarbazole as the dendron, which is covalently attached to the emissive tris[2-(2,4-difluorophenyl)-pyridyl]iridium(III) core through a nonconjugated link to form an efficient self-host system in one dendrimer. Unlike small molecular phosphors and other phosphorescent dendrimers, B-G2 shows a continuous enhancement in the device efficiency with increasing doping concentration. When using neat B-G2 as the emitting layer, the nondoped device is achieved without loss in efficiency, thus giving a state-of-art EQE as high as 15.3 % (31.3 cd A−1, 28.9 lm W−1) along with CIE coordinates of (0.16, 0.29).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201307311_sm_miscellaneous_information.pdf1.5 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. Li, D. Liu, J. Mater. Chem. 2009, 19, 7584;
- 1bH. Jiang, Macromol. Rapid Commun. 2010, 31, 2007.
- 2
- 2aM. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151;
- 2bM. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett. 1999, 75, 4.
- 3
- 3aF. C. Chen, S. C. Chang, G. F. He, S. Pyo, Y. Yang, M. Kurotaki, J. Kido, J. Polym. Sci. Part B 2003, 41, 2681;
- 3bF. C. Chen, G. F. He, Y. Yang, Appl. Phys. Lett. 2003, 82, 1006;
- 3cY. Y. Noh, C. L. Lee, J. J. Kim, K. Yase, J. Chem. Phys. 2003, 118, 2853.
- 4
- 4aK. Brunner, A. van Dijken, H. Borner, J. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, J. Am. Chem. Soc. 2004, 126, 6035;
- 4bA. van Dijken, J. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stossel, K. Brunner, J. Am. Chem. Soc. 2004, 126, 7718;
- 4cS. Shao, J. Ding, L. Wang, X. Jing, F. Wang, J. Am. Chem. Soc. 2012, 134, 15189;
- 4dS. Shao, J. Ding, L. Wang, X. Jing, F. Wang, J. Am. Chem. Soc. 2012, 134, 20290;
- 4eC.-L. Ho, W.-Y. Wong, New J. Chem. 2013, 37, 1665.
- 5
- 5aS.-H. Hwang, C. N. Moorefield, G. R. Newkome, Chem. Soc. Rev. 2008, 37, 2543;
- 5bA. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897;
- 5cW.-Y. Wong, C.-L. Ho, Coord. Chem. Rev. 2009, 253, 1709;
- 5dC. Zhong, C. Duan, F. Huang, H. Wu, Y. Cao, Chem. Mater. 2011, 23, 326;
- 5eS.-C. Lo, P. L. Burn, Chem. Rev. 2007, 107, 1097;
- 5fG. Zhou, W.-Y. Wong, X. Yang, Chem. Asian J. 2011, 6, 1706.
- 6
- 6aT. Weil, E. Reuther, K. Müllen, Angew. Chem. 2002, 114, 1980;
Angew. Chem. Int. Ed. 2002, 41, 1900;
10.1002/1521-3773(20020603)41:11<1900::AID-ANIE1900>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 6bG. R. Newkome, C. N. Moorefield, F. Vögtle, Dendritic Molecules: Concept, Synthesis and Perspectives, Wiley-VCH, Weinheim, 1996.
10.1002/9783527614875 Google Scholar
- 7S. C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, S. Sharma, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2005, 15, 1451.
- 8S.-C. Lo, R. N. Bera, R. E. Harding, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2008, 18, 3080.
- 9
- 9aS.-C. Lo, R. E. Harding, C. P. Shipley, S. G. Stevenson, P. L. Burn, I. D. W. Samuel, J. Am. Chem. Soc. 2009, 131, 16681;
- 9bG. Zhou, W.-Y. Wong, B. Yao, Z. Xie, L. Wang, Angew. Chem. 2007, 119, 1167; Angew. Chem. Int. Ed. 2007, 46, 1149.
- 10A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, I. Tsyba, N. N. Ho, R. Bau, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7377.
- 11
- 11aJ. Ding, B. Zhang, J. Lü, Z. Xie, L. Wang, X. Jing, F. Wang, Adv. Mater. 2009, 21, 4983;
- 11bK. S. Yook, J. Y. Lee, Adv. Mater. 2012, 24, 3169;
- 11cY. Tao, C. Yang, J. Qin, Chem. Soc. Rev. 2011, 40, 2943;
- 11dW.-Y. Wong, C.-L. Ho, Z.-Q. Gao, B.-X. Mi, C.-H. Chen, K.-Y. Cheah, Z. Lin, Angew. Chem. 2006, 118, 7964; Angew. Chem. Int. Ed. 2006, 45, 7800;
- 11eC.-L. Ho, Q. Wang, C.-S. Lam, W.-Y. Wong, D. Ma, L. Wang, Z.-Q. Wang, C.-H. Chen, K.-Y. Cheah, Z. Lin, Chem. Asian J. 2009, 4, 89.
- 12X. Li, J. Wang, R. Mason, X. R. Bu, J. Harrison, Tetrahedron 2002, 58, 3747.
- 13K. S. Yook, S. E. Jang, S. O. Jeon, J. Y. Lee, Adv. Mater. 2010, 22, 4479.
- 14
- 14aJ. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Funct. Mater. 2006, 16, 575;
- 14bJ. Ding, J. Lü, Y. Cheng, Z. Xie, L. Wang, X. Jing, F. Wang, Adv. Funct. Mater. 2008, 18, 2754;
- 14cJ. Ding, B. Wang, Z. Yue, B. Yao, Z. Xie, Y. Cheng, L. Wang, X. Jing, F. Wang, Angew. Chem. 2009, 121, 6792; Angew. Chem. Int. Ed. 2009, 48, 6664.
- 15Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, V. Petrov, Appl. Phys. Lett. 2001, 79, 449.
- 16T. Qin, J. Ding, L. Wang, M. Baumgarten, G. Zhou, K. Müllen, J. Am. Chem. Soc. 2009, 131, 14329.
- 17M. Sudhakar, P. I. Djurovich, T. E. Hogen-Esch, M. E. Thompson, J. Am. Chem. Soc. 2003, 125, 7796.