XeF2/Fluoride Acceptors as Versatile One-Electron Oxidants†
Corresponding Author
Dr. Helmut Poleschner
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)===Search for more papers by this authorProf. Dr. Konrad Seppelt
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)
Search for more papers by this authorCorresponding Author
Dr. Helmut Poleschner
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)===Search for more papers by this authorProf. Dr. Konrad Seppelt
Institut für Chemie und Biochemie, Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34–36, 14195 Berlin (Germany)
Search for more papers by this authorWe thank the Deutsche Forschungsgemeinschaft (Project PO 1503/1) and the Fonds der Chemischen Industrie for the support of this work, and Stefan Ellrodt for the synthesis of (Et3Si+)2 B12Cl122−.
Graphical Abstract
No phlogiston but xenon is released when XeF2/F− acceptors act as new one-electron oxidants. F− acceptors are Lewis acids BF3, B(C6F5)3, and Al{OC(CF3)3}3, and silyl derivatives TfOSiMe3, Tf2NSiMe3, Me3Si+ B(C6F5)4−, and Me3Si+ CHB11Cl11−. The anions BF4−, TfO−, Tf2N−, FB(C6F5)3−, FAl{OC(CF3)3}3−, B(C6F5)4−, or CHB11Cl11− can be introduced into oxidation products of R2E2 (E=S, Se, Te), [FeCp2], [(FeCpS)4], tetrathiafulvalene, thianthrene, and (2,4-Br2C6H3)3N.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201307161_sm_miscellaneous_information.pdf1.9 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Poleschner, K. Seppelt, Angew. Chem. 2008, 120, 6561–6564;
10.1002/ange.200801691 Google ScholarAngew. Chem. Int. Ed. 2008, 47, 6461–6464.
- 2R. Laitinen, R. Steudel, R. Weiss, J. Chem. Soc. Dalton Trans. 1986, 1095–1100.
- 3
- 3aB. Mueller, H. Poleschner, K. Seppelt, Dalton Trans. 2008, 4424–4427;
- 3bJ. Passmore, E. K. Richardson, P. Taylor, J. Chem. Soc. Dalton Trans. 1976, 1006–1011.
- 4
- 4aR. Hoppe, W. Dähne, H. Mattauch, K. M. Rödder, Angew. Chem. 1962, 74, 903; Angew. Chem. Int. Ed. Engl. 1962, 1, 599;
- 4bR. Betz, G. J. Schrobilgen, Z. Anorg. Allg. Chem. 2012, 324, 1385–1388; K. O. Christe, Chem. Commun. 2013, 49, 4588–4590.
- 5B. Zajc in Advances in Organic Synthesis: Modern Organofluorine Chemistry—Synthetic Aspects, Vol. 2 (Eds.: ), Bentham Science, Oak Park, 2007, pp. 61–157.
- 6M. Tramšek, B. Žemva, Acta Chim. Slov. 2006, 53, 105–116.
- 7
- 7aH. Poleschner, S. Ellrodt, M. Malischewski, J. Nakatsuji, C. Rohner, K. Seppelt, Angew. Chem. 2012, 124, 433–437;
10.1002/ange.201106708 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 419–422;
- 7bH. Poleschner, K. Seppelt, Chem. Eur. J. 2004, 10, 6565–6574;
- 7cK. Uneyama, M. Kanai, Tetrahedron Lett. 1990, 31, 3583–3586;
- 7dT. M. Klapötke, B. Krumm, M. Scherr, Inorg. Chem. 2008, 47, 4712–4722;
- 7eK. Sugamata, T, Sasamori, N. Tokitoh, Chem. Asian J. 2011, 6, 2301–2303.
- 8
- 8aN. Maggiarosa, D. Naumann, W. Tyrra, Angew. Chem. 2000, 112, 4759–4762;
10.1002/1521-3757(20001215)112:24<4759::AID-ANGE4759>3.0.CO;2-3 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 4588–4591;10.1002/1521-3773(20001215)39:24<4588::AID-ANIE4588>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 8bV. V. Bardin, H.-J. Frohn, J. Fluorine Chem. 2012, 138, 28–33.
- 9
- 9aN. Furukawa, S. Sato, Heteroat. Chem. 2002, 13, 406–413;
- 9bS. Sato, H. Ameta, E. Horn, O. Takahashi, N. Furukawa, J. Am. Chem. Soc. 1997, 119, 12374–12375.
- 10M. Finze, E. Bernhardt, H. Willner, C. W. Lehmann, F. Aubke, Inorg. Chem. 2005, 44, 4206–4214.
- 11M. Beretta, Antoine Lavoisier, Die Revolution in der Chemie, Spektrum der Wissenschaft/Scientific American, Sonderheft Biographie 3/1999, Spektrum, Heidelberg, 1999.
- 12
- 12aS. H. Strauss, Chem. Rev. 1993, 93, 927–942;
- 12bK. Seppelt, Angew. Chem. 1993, 105, 1074–1076; Angew. Chem. Int. Ed. Engl. 1993, 32, 1025–1027;
- 12cC. A. Reed, Acc. Chem. Res. 1998, 31, 133–139;
- 12dS. M. Ivanova, B. G. Nolan, Y. Kobayashi, S. M. Miller, O. P. Anderson, S. H. Strauss, Chem. Eur. J. 2001, 7, 503–510;
10.1002/1521-3765(20010119)7:2<503::AID-CHEM503>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 12eI. Krossing, I. Raabe, Angew. Chem. 2004, 116, 2116–2142; Angew. Chem. Int. Ed. 2004, 43, 2066–2090.
- 13K. Deuchert, S. Hünig, Angew. Chem. 1978, 90, 927–938; Angew. Chem. Int. Ed. Engl. 1978, 17, 875–886.
- 14N. G. Connelly, W. E. Geiger, Chem. Rev. 1996, 96, 877–910.
- 15G. Schukat, E. Fanghänel, Sulfur Rep. 1996, 18, 1–294.
- 16
- 16aH. Ogino, A. Sato, M. Shimoi, Bull. Chem. Soc. Jpn. 1990, 63, 2314–2317;
- 16bTrinh-Toan, B. K. Teo, J. A. Ferguson, T. J. Meyer, L. F. Dahl, J. Am. Chem. Soc. 1977, 99, 408–416.
- 17R. S. Glass, V. V. Jouikov, N. V. Bojkova, J. Org. Chem. 2001, 66, 4440–4443.
- 18S. Töteberg-Kaulen, E. Steckhan, Tetrahedron 1988, 44, 4389–4397.
- 19A. Kunai, J. Harada, J. Izumi, H. Tachihara, K. Sasaki, Electrochim. Acta 1983, 28, 1361–1366.
- 20R. D. Pergola, A. Ceriotti, A. Cinquantini, F. F. de Biani, L. Garlaschelli, M. Manassero, R. Piacentini, M. Sansoni, P. Zanello, Organometallics 1998, 17, 802–806.
- 21S. Hünig, G. Kießlich, H. Quast, D. Scheutzo, Liebigs Ann. Chem. 1973, 310–323.
- 22H. Fujihara, H. Mima, N. Furukawa, J. Am. Chem. Soc. 1995, 117, 10153–10154.
- 23
- 23aL. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht, I. Krossing, Angew. Chem. 2008, 120, 7772–7776; Angew. Chem. Int. Ed. 2008, 47, 7659–7663;
- 23bA. Kraft, N. Trapp, D. Himmel, H. Böhrer, P. Schlüter, H. Scherer, I. Krossing, Chem. Eur. J. 2012, 18, 9371–9380.
- 24
- 24aH. Bock, A. Rauschenbach, C. Nather, M. Kleine, Z. Havlas, Chem. Ber. 1994, 127, 2043–2049;
- 24bJ. Beck, T. Bredow, R. T. Tjahjanto, Z. Naturforsch. Sect. B 2009, 64, 145–152.
- 25
- 25aT. S. Cameron, A. Decken, I. Krossing, J. Passmore, J. M. Rautiainen, X. Wang, X. Zeng, Inorg. Chem. 2013, 52, 3113–3126;
- 25bI. Krossing, J. Chem. Soc. Dalton Trans. 2002, 500–512.
- 26
- 26aW. Schmidt, E. Steckhan, Chem. Ber. 1980, 113, 577–585;
- 26bR. D. Bolskar, R. S. Mathur, C. A. Reed, J. Am. Chem. Soc. 1996, 118, 13093–13094;
- 26cY. Murata, F. Cheng, T. Kitagawa, K. Komatsu, J. Am. Chem. Soc. 2004, 126, 8874–8875.
- 27K. Seppelt, Angew. Chem. 1982, 94, 890–901; Angew. Chem. Int. Ed. Engl. 1982, 21, 877–888.
- 28aM. Kessler, C. Knapp, V. Sagawe, H. Scherer, R. Uzun, Inorg. Chem. 2010, 49, 5223–5230;
- 28bC. Bolli, J. Derendorf, M. Keßler, C. Knapp, H. Scherer, C. Schulz, J. Warneke, Angew. Chem. 2010, 122, 3616–3619;
10.1002/ange.200906627 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 3536–3538.
- 29C. Köllemann, F. Sladky, J. Organomet. Chem. 1990, 396, C 1–C3.
- 30
- 30aK. Sugamata, T. Sasamori, N. Tokitoh, Eur. J. Inorg. Chem. 2012, 775–778;
- 30bJ. Beckmann, J. Bolsinger, A. Duthie, P. Finke, E. Lork, C. Lüdtke, O. Mallow, S. Mebs, Inorg. Chem. 2012, 51, 12395–12406.
- 31R. Destro, V. Lucchini, G. Modena, L. Pasquato, J. Org. Chem. 2000, 65, 3367–3370.
- 32
- 32aS. Boryczka, D. Elothmani, Q. T. Do, J. Simonet, G. L. Guillanton, J. Electrochem. Soc. 1996, 143, 4027–4032;
- 32bG. Bontempelli, F. Magno, G.-A. Mazzochini, J. Electroanal. Chem. Interfac. Electrochem. 1973, 42, 57–67.
- 33B. Mueller, T. T. Takaluoma, R. S. Laitinen, K. Seppelt, Eur. J. Inorg. Chem. 2011, 4970–4977.
- 34C. Santi, S. Santoro, Organoselenium Chemistry, Synthesis and Reactions (Ed.: ), Wiley-VCH, Weinheim, 2012, pp. 1–51.
- 35C. A. Reed, K.-C. Kim, R. D. Bolskar, L. J. Mueller, Science 2000, 289, 101–104.
- 36
- 36aM. J. Molski, M. A. Khanfar, H. Shorafa, K. Seppelt, Eur. J. Org. Chem. 2013, 3131–3136;
- 36bM. J. Molski, D. Mollenhauer, S. Gohr, B. Paulus, M. A. Khanfar, H. Shorafa, S. H. Strauss, K. Seppelt, Chem. Eur. J. 2012, 18, 6644–6654;
- 36cH. Shorafa, D. Mollenhauer, B. Paulus, K. Seppelt, Angew. Chem. 2009, 121, 5959–5961;
10.1002/ange.200900666 Google ScholarAngew. Chem. Int. Ed. 2009, 48, 5845–5847.
- 37
- 37aT. Köchner, T. A. Engesser, H. Scherer, D. A. Plattner, A. Steffani, I. Krossing, Angew. Chem. 2012, 124, 6635–6637;
10.1002/ange.201201262 Google ScholarAngew. Chem. Int. Ed. 2012, 51, 6529–6531;
- 37bC. Bolli, T. Köchner, C. Knapp, Z. Anorg. Allg. Chem. 2012, 638, 559–564;
- 37cT. Köchner, S. Riedel, A. J. Lehner, H. Scherer, I. Raabe, T. A. Engesser, F. W. Scholz, U. Gellrich, P. Eiden, R. A. Paz-Schmidt, D. A. Plattner, I. Krossing, Angew. Chem. 2010, 122, 8316–8320;
10.1002/ange.201003031 Google ScholarAngew. Chem. Int. Ed. 2010, 49, 8139–8143.
- 38B. T. King, B. C. Noll, A. J. McKinley, J. Michl, J. Am. Chem. Soc. 1996, 118, 10902–10903.
- 39
- 39aW. E. Geiger, F. Barriere, Acc. Chem. Res. 2010, 43, 1030–1039;
- 39bR. T. Boeré, C. Bolli, M. Finze, A. Himmelspach, C. Knapp, T. L. Roemmele, Chem. Eur. J. 2013, 19, 1784–1795.
- 40T. Küppers, E. Bernhardt, R. Eujen, H. Willner, C. W. Lehmann, Angew. Chem. 2007, 119, 6462–6465;
10.1002/ange.200701136 Google ScholarAngew. Chem. Int. Ed. 2007, 46, 6346–6349.
- 41A. Hasegawa, K. Ishihara, H. Yamamoto, Angew. Chem. 2003, 115, 5909–5911; Angew. Chem. Int. Ed. 2003, 42, 5731–5733.
- 42T. A. Engesser, I. Krossing, Coord. Chem. Rev. 2013, 257, 946–955.