Molecular Understanding of Reactivity and Selectivity for Methanol Oxidation at the Au/TiO2 Interface†
Corresponding Author
Dr. Matteo Farnesi Camellone
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
These authors contributed equally to this work.
Matteo Farnesi Camellone, Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Yuemin Wang, Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorDr. Jianli Zhao
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
These authors contributed equally to this work.
Search for more papers by this authorLanying Jin
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorCorresponding Author
Dr. Yuemin Wang
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Matteo Farnesi Camellone, Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Yuemin Wang, Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorProf. Dr. Martin Muhler
Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorProf. Dr. Dominik Marx
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorCorresponding Author
Dr. Matteo Farnesi Camellone
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
These authors contributed equally to this work.
Matteo Farnesi Camellone, Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Yuemin Wang, Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorDr. Jianli Zhao
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
These authors contributed equally to this work.
Search for more papers by this authorLanying Jin
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorCorresponding Author
Dr. Yuemin Wang
Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Matteo Farnesi Camellone, Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Yuemin Wang, Lehrstuhl für Physikalische Chemie I and Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorProf. Dr. Martin Muhler
Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorProf. Dr. Dominik Marx
Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum (Germany)
Search for more papers by this authorThis work was supported by the Deutsche Forschungsgemeinschaft (DFG) within SFB 558 and by the Cluster of Excellence “RESOLV” (EXC 1069). Partial financial support from the Research Department “Interfacial Systems Chemistry” funded by RUB is gratefully acknowledged. Computational resources were provided by NIC (Jülich), Bovilab@RUB (Bochum), RV-NRW as well as PRACE (FERMI at Cineca).
Graphical Abstract
Gold catalysis: Experimental and theoretical data demonstrated consistently that the interfacial sites on a Au/TiO2 catalyst show both high reactivity and selectivity for low-temperature methanol oxidation with O2 to give formaldehyde. The microscopic mechanism of this complex reaction has been unraveled in full molecular detail (see picture, gold cluster on TiO2 surface).
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
anie_201301868_sm_miscellaneous_information.pdf4.9 MB | miscellaneous_information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aM. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 1987, 405–408;
- 1bM. Haruta, Chem. Rec. 2003, 3, 75–87.
- 2
- 2aM. Valden, X. Lai, D. W. Goodman, Science 1998, 281, 1647–1650;
- 2bM. S. Chen, D. W. Goodman, Science 2004, 306, 252–255.
- 3B. K. Min, C. M. Friend, Chem. Rev. 2007, 107, 2709–2724.
- 4R. Meyer, C. Lemire, S. K. Shaikhutdinov, H. J. Freund, Gold Bull. 2004, 37, 72–124.
- 5I. N. Remediakis, N. Lopez, J. K. Norskov, Angew. Chem. 2005, 117, 1858–1860;
10.1002/ange.200461699 Google ScholarAngew. Chem. Int. Ed. 2005, 44, 1824–1826.
- 6A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. 2006, 118, 8064–8105;
10.1002/ange.200602454 Google ScholarAngew. Chem. Int. Ed. 2006, 45, 7896–7936.
- 7B. Yoon, H. Häkkinen, U. Landman, A. Wörz, J. M. Antonietti, S. Abbet, S. K. Judai, U. Heiz, Science 2005, 307, 403–407.
- 8aM. M. Schubert, S. Hackenberg, A. C. van Veen, M. Muhler, V. Plzak, R. J. Behm, J. Catal. 2001, 197, 113–122;
- 8bD. Widmann, R. J. Behm, Angew. Chem. 2011, 123, 10424–10428;
10.1002/ange.201102062 Google ScholarAngew. Chem. Int. Ed. 2011, 50, 10241–10245.
- 9C. Jia, J. Liu, H. Bongard, F. Schüth, J. Am. Chem. Soc. 2010, 132, 1520–1522.
- 10I. X. Green, W. Tang, M. Neurock, J. T. Yates, Jr., Science 2011, 333, 736–739.
- 11
- 11aS. Biella, M. Rossi, Chem. Commun. 2003, 378–379;
- 11bD. I. Enache, J. K. Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing, M. Watanabe, C. J. Kiely, D. W. Knight, G. J. Hutchings, Science 2006, 311, 362–365;
- 11cA. Corma, H. A. García, Chem. Soc. Rev. 2008, 37, 2096–2126.
- 12
- 12aG. A. Olah, A. Goeppert, G. K. Surya Prakash, Wiley-VCH, Weinheim, 2006;
- 12bM. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B. L. Kniep, M. Tovar, R. W. Fisher, J. K. Nørskov, R. Schlögl, Science 2012, 336, 893–897.
- 13
- 13aI. E. Markó, P. R. Giles, M. Tsukazaki, S. M. Brown, C. J. Urch, Science 1996, 274, 2044–2046;
- 13bT. Mallat, A. Baiker, Chem. Rev. 2004, 104, 3037–3058;
- 13cM. D. Hughes, Y. J. Xu, P. Jenkins, P. McMorn, P. Landon, D. I. Enache, A. F. Carley, G. A. Attard, G. J. Hutchings, F. King, E. H. Stitt, P. Johnston, K. Griffin, C. J. Kiely, Nature 2005, 437, 1132–1135.
- 14
- 14aS. Lee, C. Fan, T. Wu, S. L. Anderson, J. Am. Chem. Soc. 2004, 126, 5682–5683;
- 14bA. A. Herzing, C. J. Kiely1, A. F. Carley, P. Landon, G. J. Hutchings, Science 2008, 321, 1331–1335;
- 14cJ. Oliver-Meseguer, J. R. Cabrero-Antonino, I. Domínguez, A. Leyva-Pérez, A. Corma, Science 2012, 338, 1452–1455.
- 15
- 15aJ. G. Wang, B. Hammer, Phys. Rev. Lett. 2006, 97, 136107;
- 15bH. Y. Kim, M. Lee, G. Henkelman, J. Am. Chem. Soc. 2012, 134, 1560–1570.
- 16U. Diebold, Surf. Sci. Rep. 2003, 48, 53–229.
- 17
- 17aM. V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep. 2007, 62, 219–270;
- 17bP. Kowalski, M. Farnesi Camellone, N. N. Nair, B. Meyer, D. Marx, Phys. Rev. Lett. 2010, 105, 146405.
- 18
- 18aM. Farnesi Camellone, P. M. Kowalski, D. Marx, Phys. Rev. B 2011, 84, 035413;
- 18bD. Matthey, J. G. Wang, S. Wendt, J. Matthiesen, R. Schaub, E. Læsgaard, B. Hammer, F. Besenbacher, Science 2007, 315, 1692–1696;
- 18cS. Chrétien, H. Metiu, J. Chem. Phys. 2007, 127, 244707.
- 19
- 19aX. Lai, T. P. St. Clair, M. Valden, D. W. Goodman, Prog. Surf. Sci. 1998, 59, 25–52;
- 19bX. Lai, D. W. Goodman, J. Mol. Catal. A 2000, 162, 33–50;
- 19cC. E. J. Mitchell, A. Howard, M. Carney, R. G. Egdell, Surf. Sci. 2001, 490, 196–210;
- 19dA. K. Santra, A. Kolmakov, F. Yang, D. W. Goodman, Jpn. J. Appl. Phys. 2003, 42, 4795–4798;
- 19eS. Kielbassa, M. Kinne, R. J. Behm, J. Phys. Chem. B 2004, 108, 19184–19190;
- 19fT. Minato, T. Susaki, S. Shiraki, H. S. Kato, M. Kawai, K. Aika, Surf. Sci. 2004, 566, 1012–1017.
- 20M. Xu, H. Noei, K. Fink, M. Muhler, Y. Wang, C. Wöll, Angew. Chem. 2012, 124, 4810–4813; Angew. Chem. Int. Ed. 2012, 51, 4731–4734.
- 21Q. Guo, K. Luo, K. A. Davis, D. W. Goodman, Surf. Interface Anal. 2001, 32, 161–165.
- 22M. A. Henderson, W. S. Epling, C. H. F. Peden, C. L. Perkins, J. Phys. Chem. B 2003, 107, 534–545.
- 23
- 23aM. A. Brown, F. Ringleb, Y. Fujimori, M. Sterrer, H. J. Freund, G. Preda, G. Pacchioni, J. Phys. Chem. C 2011, 115, 10114–10124;
- 23bH. Noei, A. Birkner, K. Merz, M. Muhler, Y. Wang, J. Phys. Chem. C 2012, 116, 11181–11188.
- 24F. Boccuzzi, A. Chiorino, M. Manzoli, M. Haruta, J. Catal. 2001, 202, 256–267.
- 25
- 25aM. A. Henderson, S. Otero-Tapia, M. E. Castro, Faraday Discuss. 1999, 114, 313–329;
- 25bE. Farfan-Arribas, R. J. Madix, Surf. Sci. 2003, 544, 241–260.