Is an Electronic Shield at the Molecular Origin of Lead Poisoning? A Computational Modeling Experiment†
Christophe Gourlaouen Dr.-Ing.
Laboratoire de Chimie Théorique – UMR 7616 CNRS/UPMC, Université Pierre et Marie Curie – Paris 6, Case Courrier 137-4, place Jussieu, 75252 Paris CEDEX 05, France, Fax: (+33) 1-4427-4117 http://www.lct.jussieu.fr
Search for more papers by this authorOlivier Parisel Dr.
Laboratoire de Chimie Théorique – UMR 7616 CNRS/UPMC, Université Pierre et Marie Curie – Paris 6, Case Courrier 137-4, place Jussieu, 75252 Paris CEDEX 05, France, Fax: (+33) 1-4427-4117 http://www.lct.jussieu.fr
Search for more papers by this authorChristophe Gourlaouen Dr.-Ing.
Laboratoire de Chimie Théorique – UMR 7616 CNRS/UPMC, Université Pierre et Marie Curie – Paris 6, Case Courrier 137-4, place Jussieu, 75252 Paris CEDEX 05, France, Fax: (+33) 1-4427-4117 http://www.lct.jussieu.fr
Search for more papers by this authorOlivier Parisel Dr.
Laboratoire de Chimie Théorique – UMR 7616 CNRS/UPMC, Université Pierre et Marie Curie – Paris 6, Case Courrier 137-4, place Jussieu, 75252 Paris CEDEX 05, France, Fax: (+33) 1-4427-4117 http://www.lct.jussieu.fr
Search for more papers by this authorThis research was supported by the French IDRIS (Orsay) and CINES (Montpellier) national supercomputing centers. The authors are indebted to Dr. H. Gérard (LCT, Paris VI) and Dr. J. Maddaluno (IRCOF, Rouen) for stimulating discussions.
Graphical Abstract
Chop and change: Upon substitution of native Zn2+ by exogenous Pb2+ ions in a model of δ-aminolevulinic acid dehydratase, a dramatic change occurs in the topology of the electron localization function at the active site of the protein. This effect is expected to disrupt the natural function of the metalated domain.
References
- 1K. J. R. Rosman, W. Chisholm, S. Hong, J.-P. Candelone, C. F. Boutron, Environ. Sci. Technol. 1997, 31, 3413; I. Renberg, R. Bindler, M.-L. Brännvall, Holocene 2001, 11, 511.
- 2C. C. Patterson, Arch. Environ. Health 1965, 11, 344.
- 3H. A. Waldron, Lancet 1973, 302, 626;
10.1016/S0140-6736(73)92467-7 Google ScholarT. Waldron, Lancet 1978, 312, 1315;10.1016/S0140-6736(78)92084-6 Google ScholarJ. Scarborough, J. Hist. Med. 1984, 39, 469; S. C. Gilfillan, J. Occup. Med. 1965, 7, 53; L. Needleman, D. Needleman, Class. Views 1985, 4, 63.
- 4S. Hernberg, Am. J. Ind. Med. 2000, 38, 244; J. Eisinger, Med. Hist. 1982, 26, 279; H. A. Waldron, Med. Hist. 1973, 17, 391.
- 5H. L. Needleman, Environ. Res. 2000, 84, 20; H. L. Needleman, Environ. Res. 1998, 78, 79; H. L. Needleman, Environ. Res. 1997, 74, 95.
- 6J. R. McConnell, G. W. Lamorey, M. A. Hutterli, Geophys. Res. Lett. 2002, 29, 2130; K. J. R. Rosman, W. Chilsom, J. P. Candelone, S. Hong, C. F. Boutron, Geochim. Cosmochim. Acta 1994, 58, 3265.
- 7“Lead Neurotoxicity”: D. A. Cory-Slechta, J. G. Pound in Handbook of Neurotoxicology (Eds.: ), Marcel Dekker, New York, 1995.
- 8Y. Finkelstein, M. E. Markowitz, J. F. Rosen, Brain Res. Rev. 1998, 27, 168; D. E. Glotzer, H. Bauchner, Pediatrics 1992, 89, 614.
- 9For recent statistics concerning China, see: S. Wang, J. Zhang, Environ. Res. 2006, 101, 412.
- 10B. P. Lanphear, R. Hornung, J. Khoury, K. Yolton, P. Baghurst, D. C. Bellinger, R. L. Canfield, K. N. Dietrich, R. Bornshein, T. Greene, S. J. Rothenberg, H. L. Needleman, L. Schnaas, G. Wasserman, J. Graziani, R. Roberts, Environ. Health Perspect. 2005, 113, 894;
B. B. Gump, P. Stewart, J. Reihman, E. Lonky, T. Darvill, K. A. Matthews, P. J. Parsons, Neurotoxicol. Teratol. 2005, 27, 655;
K. D. Rosenman, A. Sims, Z. Luo, J. Gardiner, J. Occup. Environ. Med. 2003, 45, 546;
S. Araki, H. Sato, K. Yokoyama, K. Murata, Am. J. Ind. Med. 2000, 37, 193.
10.1002/(SICI)1097-0274(200002)37:2<193::AID-AJIM5>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- 11J. C. Payne, M. A. ter Horst, H. A. Godwin, J. Am. Chem. Soc. 1999, 121, 6850.
- 12H. A. Godwin, Curr. Opin. Chem. Biol. 2001, 5, 223.
- 13O. Andersen, Chem. Rev. 1999, 99, 2683; E. L. Liebelt, M. W. Shannon, Pediatr. Ann. 1994, 23, 616.
- 14S. J. S. Flora, G. M. Kannan, B. P. Pant, Arch. Toxicol. 2002, 76, 269; S. J. S. Flora, R. Bhattacharya, R. Vijayaraghavan, Fundam. Appl. Toxicol. 1995, 25, 233; W. Zheng, R. M. Maiorino, K. Brendel, H. V. Aposhian, Fundam. Appl. Toxicol. 1990, 14, 598.
- 15C. Gourlaouen, J.-P. Piquemal, T. Saue, O. Parisel, J. Comput. Chem. 2006, 27, 142; C. Gourlaouen, J.-P. Piquemal, O. Parisel, J. Chem. Phys. 2006, 124, 174311; C. Gourlaouen, H. Gérard, O. Parisel, Chem. Eur. J. 2006, 12, 5024.
- 16J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of Structure and Reactivity, Harper & Collins, New York, 1993.
- 17L. Shimoni-Livny, J. P. Glusker, C. W. Bock, Inorg. Chem. 1998, 37, 1853.
- 18D. Chin, A. R. Means, Trends Cell Biol. 2000, 10, 322; D. Campagna, G. Huel, G. Hellier, F. Girard, J. Sahuquillo, A. Fagot-Campagna, J. Godin, P. Blot, Life Sci. 2000, 68, 203.
- 19C. M. L. S. Bouton, L. P. Frelin, C. E. Forde, H. A. Godwin, J. Pevsner, J. Neurochem. 2001, 76, 1724.
- 20G. Goldstein, Neurotoxicology 1993, 14, 97; C. S. Fullmer, S. Edelstein, R. H. Wasserman, J. Biol. Chem. 1985, 260, 6816; S. H. Chao, Y. Suzuki, J. R. Zysk, W. Y. Cheung, Mol. Pharm. 1984, 26, 75; E. Habermann, K. Crowell, P. Janicki, Arch. Toxicol. 1983, 54, 61; H. Ouyang, H. J. Vogel, Biometals 1998, 11, 213; C. Ferguson, M. Kern, G. Audesirk, Neurotoxicology 2000, 21, 365; R. H. S. Westerink, A. A. Klompmakers, H. G. M. Westenberg, H. P. M. Vijverberg, Brain Res. 2002, 957, 25.
- 21M. A. Wilson, A. T. Brunger, Acta Crystallogr. Sect. D 2003, 59, 1782.
- 22http://www.pdb.org
- 23R. Chattopadhyaya, W. E. Meador, A. R. Means, F. A. Quiocho, J. Mol. Biol. 1992, 228, 1177.
- 24E. K. Jaffe, J. Martins, J. Li, J. Kerniven, R. L. Dunbrack, Jr., J. Biol. Chem. 2001, 276, 1531.
- 25T. J. B. Simons, Eur. J. Biochem. 1995, 234, 178; M. J. Warren, J. B. Cooper, S. P. Wood, P. M. Shoolingin-Jordan, Trends Biochem. Sci. 1998, 23, 217.
- 26J. C. Payne, B. W. Rous, A. L. Tenderholt, H. A. Godwin, Biochemistry 2003, 42, 14214.
- 27A. B. Ghering, L. M. Miller Jenkins, B. L. Schenck, S. Deo, R. A. Mayer, M. J. Pikaart, J. G. Omichinski, H. A. Godwin, J. Am. Chem. Soc. 2005, 127, 3751.
- 28N. L. Mills-Davies, PhD thesis, University of Southampton, UK, 2001; P. T. Erskine, L. Coates, R. Newbold, A. A. Brindley, F. Stauffer, G. D. E. Beaven, R. Gill, A. Cocker, S. P. Wood, M. J. Warren, P. M. Shoolingin-Jordan, R. Neier, J. B. Cooper, Acta Crystallogr. Sect. D 2005, 61, 1222.
- 29L. Coates, G. Beaven, P. T. Erskine, S. I. Beale, S. P. Wood, P. M. Shoolingin-Jordan, J. B. Cooper, Acta Crystallogr. Sect. D 2005, 61, 1594; T. Simonson, N. Calimet, Proteins Struct. Funct. Genet. 2002, 49, 37.
- 30B. M. Bridgewater, G. Parkin, J. Am. Chem. Soc. 2000, 122, 7140; G. Parkin, Chem. Rev. 2004, 104, 699.
- 31J. S. Magyar, T.-C. Weng, C. M. Stern, D. F. Dye, B. W. Rous, J. C. Payne, B. M. Bridgewater, A. Mijovilovich, G. Parkin, J. M. Zalzski, J. E. Penner-Hahn, H. A. Godwin, J. Am. Chem. Soc. 2005, 127, 9495.
- 32V(Pb) represents the volume of the valence monosynaptic basin of the Pb2+ cation, which, chemically, corresponds to the n=6 shell. For the native structures, it is computed by putting the Pb2+ cation in place of the native cations before any structural reorganization.
- 33C. Gourlaouen, PhD Thesis, University Paris VI, France, 2006.
- 34C. Huo, C. Wang, M. Zhao, S. Peng, Chem. Res. Toxicol. 2004, 12, 1112.
- 35D. L. Callahan, A. J. M. Baker, S. D. Kolev, A. G. Weed, J. Biol. Inorg. Chem. 2006, 11, 2; M. Ghosh, S. P. Singhh, Appl. Ecol. Environ. Res. 2005, 3, 1; C. S. Cobbett, Plant Physiol. 2000, 123, 825; S. A. Hamidinia, B. Tan, W. L. Erdahl, C. J. Chapman, R. W. Taylor, D. R. Pfeiffer, Biochemistry 2004, 43, 15956; G. Scarano, E. Morelli, Biometals 2002, 15, 145; P. Sharma, R. S. Dubey, Braz. J. Plant Physiol. 2005, 17, 35;
- 36Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian Inc., Wallingford CT, 2004.
- 37D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta 1990, 77, 123.
- 38A. D. Becke, K. E. Edgecombe, J. Chem. Phys. 1990, 92, 5397;
A. Savin, R. Nesper, S. Wengert, T. F. Fässler, Angew. Chem. 1997, 109, 1892;
10.1002/ange.19971091706 Google ScholarAngew. Chem. Int. Ed. Engl. 1997, 36, 1808; B. Silvi, A. Savin, Nature 1994, 371, 683; A. Savin, B. Silvi, F. Colonna, Can. J. Chem. 1996, 74, 1088.
- 39For a recent review, see: J. Poater, M. Duran, M. Solà, B. Silvi, Chem. Rev. 2005, 105, 3911; E. Matito, B. Silvi, M. Duran, M. Solà, J. Chem. Phys. 2006, 125, 024301.
- 40S. Noury, X. Krokidis, F. Fuster, B. Silvi, TopMod Package, 1997. This package is available on the web site of the Laboratoire de Chimie Théorique, Université Pierre et Marie Curie (UMR CNRS/UPMC 7616), URL: http://www.lct.jussieu.fr.
- 41S. Noury, X. Krokidis, F. Fuster, B. Silvi, Comput. Chem. 1999, 23, 597.