Kinetic Control of Self-Assembly Pathway in Dual Dynamic Covalent Polymeric Systems
This article relates to:
-
Qi Zhang
- Volume 137Issue 10Angewandte Chemie
- First Published online: February 5, 2025
Ling Liu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDr. Yuanxin Deng
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDa-Hui Qu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Dr. Ben L. Feringa
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
Search for more papers by this authorProf. Dr. He Tian
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Jun.-Prof. Dr. Qi Zhang
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorLing Liu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDr. Yuanxin Deng
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorDa-Hui Qu
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorProf. Dr. Ben L. Feringa
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
Search for more papers by this authorProf. Dr. He Tian
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Jun.-Prof. Dr. Qi Zhang
Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorAbstract
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds—including disulfide bonds and boroxine/borate—into a dynamic equilibrium system of monomers, polymers, and materials. This dual dynamic covalent design allows polymer growth and crosslinking to occur with the same spatiotemporal characteristics, governed solely by solvent evaporation. We found that a single building block can assemble into two distinct types of polymeric materials, each characterized by unique crosslinking topologies, orders, solubility, and macroscopic properties. The dual dynamic nature of the materials imparts them with intrinsic reconfigurability, such as interfacial repairability and close-loop chemical recyclability.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202424147-sup-0001-misc_information.pdf3.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aJ. M. Lehn, Angew. Chem. Int. Ed. 1988, 27, 89–112;
- 1bT. Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813–817;
- 1cL. Yang, X. Tan, Z. Wang, X. Zhang, Chem. Rev. 2015, 115, 7196–7239;
- 1dJ. M. Lehn, Prog. Polym. Sci. 2005, 30, 814–831;
- 1eN. Roy, V. Schädler, J. M. Lehn, Acc. Chem. Res. 2024, 57, 349–361;
- 1fD. B. Amabilino, D. K. Smith, J. W. Steed, Chem. Soc. Rev. 2017, 46, 2404–2420;
- 1gJ. F. Lutz, J. M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater. 2016, 1, 16024;
- 1hP. K. Hashim, J. Bergueiro, E. W. Meijer, T. Aida, Prog. Polym. Sci. 2020, 105, 101250.
- 2
- 2aS. Wang, M. W. Urban, Nat. Rev. Mater. 2020, 5, 562–583;
- 2bR. P. Wool, Soft Matter 2008, 4, 400–418;
- 2cS. K. Ghosh, Self-Healing Materials: Fundamentals, Design Strategies, and Applications. Weinheim: Wiley-VCH, 2009, 18;
- 2dG. L. Fiore, S. J. Rowan, C. Weder, Chem. Soc. Rev. 2013, 42, 7278–7288;
- 2eY. Chen, A. M. Kushner, G. A. Williams, Z. Guan, Nat. Chem. 2012, 4, 467–472;
- 2fY. Yanagisawa, Y. Nan, K. Okuro, T. Aida, Science 2018, 359, 72–76.
- 3
- 3aJ. M. Lehn, Angew. Chem. Int. Ed. 2015, 54, 3276–3289;
- 3bJ. M. Lehn, Chem. Soc. Rev. 2007, 36, 151–160;
- 3cJ. M. Lehn, Angew. Chem. Int. Ed. 2013, 52, 2836–2850;
- 3dR. Gu, J. M. Lehn, J. Am. Chem. Soc. 2021, 143, 14136–14146;
- 3eA. Walther, Adv. Mater. 2020, 32, 1905111.
- 4
- 4aT. Aida, E. W. Meijer, Isr. J. Chem. 2020, 60, 33–47;
- 4bM. Hong, E. Y. X. Chen, Green Chem. 2017, 19, 3692–3706;
- 4cP. R. Christensen, A. M. Scheuermann, K. E. Loeffler, B. A. Helms, Nat. Chem. 2019, 11, 442–448;
- 4dZ. Zou, C. Zhu, Y. Li, X. Lei, W. Zhang, J. Xiao, Sci. Adv. 2018, 4, eaaq0508.
- 5J. W. Steed, J. L. Atwood, Supramolecular Chemistry, John Wiley & Sons. 2022.
- 6
- 6aP. A. Korevaar, S. J. George, A. J. Markvoort, M. M. Smulders, P. A. Hilbers, A. P. Schenning, E. W. Meijer, Nature 2012, 481, 492–496;
- 6bM. Wehner, F. Würthner, Nat. Chem. Rev. 2020, 4, 38–53;
- 6cA. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476–5490;
- 6dN. Giuseppone, A. Walther, Out-of-Equilibrium (Supra) molecular Systems and Materials, 2021, 1–19;
- 6eJ. H. Van Esch, R. Klajn, S. Otto, Chem. Soc. Rev. 2017, 46, 5474–5475.
- 7
- 7aG. Singh, H. Chan, A. Baskin, E. Gelman, N. Repnin, P. Král, R. Klajn, Science 2014, 345, 1149–1153;
- 7bS. Zhang, M. A. Greenfield, A. Mata, L. C. Palmer, R. Bitton, J. R. Mantei, C. Aparicio, De La Cruz MO, S. I. Stupp, Nat. Mater. 2010, 9, 594–601;
- 7cZ. Yu, F. Tantakitti, T. Yu, L. C. Palmer, G. C. Schatz, S. I. Stupp, Science 2016, 351, 497–502;
- 7dR. P. Lafleur, S. Herziger, S. M. Schoenmakers, A. D. Keizer, J. Jahzerah, B. N. Thota, L. Su, P. H. Bomans, N. A. Sommerdijk, A. R. Palmans, R. Haag, J. Am. Chem. Soc. 2020, 142, 17644–17652;
- 7eS. Datta, Y. Kato, S. Higashiharaguchi, K. Aratsu, A. Isobe, T. Saito, D. D. Prabhu, Y. Kitamoto, M. J. Hollamby, A. J. Smith, R. Dalgliesh, Nature 2020, 583, 400–405.
- 8
- 8aJ. M. Lehn, Angew. Chem. Int. Ed. 1990, 29, 1304–1319;
- 8bN. J. Penfold, J. Yeow, C. Boyer, S. P. Armes, ACS Macro Lett. 2019, 8, 1029–1054;
- 8cS. H. Yu, R. O'Reilly, L. Jiang, N. A. Kotov, Acc. Chem. Res. 2022, 55, 1783–1784;
- 8dF. Lossada, D. Hoenders, J. Guo, D. Jiao, A. Walther, Acc. Chem. Res. 2020, 53, 2622–2635;
- 8eP. Jonkheijm, P. van der Schoot, A. P. Schenning, E. W. Meijer, Science 2006, 13, 80–83.
- 9
- 9aS. J. Rowan, S. J. Cantrill, G. R. Cousins, J. K. Sanders, J. F. Stoddart, Angew. Chem. Int. Ed. 2002, 41, 898–952;
- 9bY. Jin, C. Yu, R. J. Denman, W. Zhang, Chem. Soc. Rev. 2013, 42, 6634–6654.
- 10Q. Zhang, Y. Deng, H. Luo, C. Shi, G. M. Geise, B. L. Feringa, H. Tian, D. H. Qu, J. Am. Chem. Soc. 2019, 141, 12804–12814.
- 11
- 11aY. Liu, Y. Jia, Q. Wu, J. S. Moore, J. Am. Chem. Soc. 2019, 141, 17075–17080;
- 11bQ. Zhang, Y. Deng, C. Shi, B. L. Feringa, H. Tian, D. H. Qu, Matter 2021, 4, 1352–1364;
- 11cQ. Zhang, D. H. Qu, B. L. Feringa, H. Tian, J. Am. Chem. Soc. 2022, 144, 2022–2033;
- 11dT. Du, B. Shen, J. Dai, M. Zhang, X. Chen, P. Yu, Y. Liu, J. Am. Chem. Soc. 2023, 145, 27788–27799.
- 12
- 12aM. D. Preuss, T. Schnitzer, S. A. Jansen, S. C. Meskers, T. H. Kuster, X. G. Lou, Angew. Chem. Int. Ed. 2024, e202402644;
- 12bA. Franco, J. R. Ascenso, L. Ilharco, H. P. Diogo, V. André, J. A. L. da Silva, J. Mol. Struct. 2019, 1184, 281–288;
- 12cC. Su, D. L. Suarez, Environ. Sci. Technol. 1995, 29, 302–311;
- 12dE. Hamzehpoor, F. Effaty, T. H. Borchers, R. S. Stein, A. Ottenwaelder, X. Wahrhaftig-Lewis, D. F. Perepichka, Angew. Chem. Int. Ed. 2024, e202404539.
- 13
- 13aG. D. Khattak, M. A. Salim, L. E. Wenger, A. H. Gilani, J. Non-Cryst. Solids. 1999, 244, 128–136;
- 13bB. Oprea, T. Radu, S. Simon, J. Non-Cryst. Solids. 2013, 379, 35–39;
- 13cS. Zhang, X. Wang, F. Kang, Q. Gu, G. Sun, Y. K. Peng, Q. Zhang, SmartMat 2024, e1265;
- 13dW. Zhang, B. Li, Int. J. Electrochem. Sci. 2018, 13, 3516–3526.
- 14
- 14aJ. Huang, A. A. Wróblewska, J. Steinkoenig, S. Maes, F. E. Du Prez, Macromolecules 2021, 54, 4658–4668;
- 14bF. Lossada, D. Jiao, D. Hoenders, A, Walther, ACS Nano 2021, 15, 5043–5055;
- 14cJ. Xu, T. Liu, Y. Zhang, Y. Zhang, K. Wu, C. Lei, Q. Fu, J. Fu, Matter 2021, 4, 2474–2489.
- 15
- 15aK. Park, S. Mishra, G. Lewis, J. Losby, Z. Fan, J. B. Park, Biomaterials. 2004, 25, 2427–2436;
- 15bK. Wang, W. Gao, X. Wang, H. He, J. Appl. Polym. Sci. 2017, 134;
- 15cW. Fang, Z. Mu, Y. He, K. Kong, K. Jiang, R. Tang, Z. Liu, Nature 2023, 619, 293–299.
- 16
- 16aM. D. Preuss, T. Schnitzer, S. A. Jansen, S. C. Meskers, T. H. Kuster, X. Lou, E. W. Meijer, G. Vantomme, Angew. Chem. Int. Ed. 2024, e202402644;
- 16bM. Shi, C. Y. Shi, Q. Zhang, D. H. Qu, Chem. Eng. J. 2024, 484, 149564;
- 16cY. Deng, Q. Zhang, B. L. Feringa, Adv. Sci. 2024, 11, 2308666;
- 16dX. Li, Y. Zhang, Z. Shi, D. Wang, H. Yang, Y. Zhang, H. Qin, W. Lu, J. Chen, Y. Li, G. Qing, Nat. Commun. 2024, 15, 1207.
- 17
- 17aA. Wilson, G. Gasparini, S. Matile, Chem. Soc. Rev. 2014, 43, 1948–1962;
- 17bY. Jin, Q. Wang, P. Taynton, W. Zhang, Acc. Chem. Res. 2014, 47, 1575–1586;
- 17cY. Deng, Q. Zhang, D. H. Qu, H. Tian, B. L. Feringa, Angew. Chem. Int. Ed. 2022, 61, e202209100;
- 17dW. Miao, B. Yang, B. Jin, C. Ni, H. Feng, Y. Xue, N. Zheng, Q. Zhao, Y. Shen, T. Xie, Angew. Chem. Int. Ed. 2022, 61, e202109941.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.