Building Three-Dimensional Complexity by Intramolecular 2-Aminoallyl Cation−Diene (4+3) Cycloaddition
Lulu Shen
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorTianzhu Qin
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorChongling Jiao
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Weiwei Zi
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071 China
Search for more papers by this authorLulu Shen
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorTianzhu Qin
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorChongling Jiao
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Dr. Weiwei Zi
State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071 P. R. China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071 China
Search for more papers by this authorAbstract
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation−diene (4+3) cycloaddition reactions. By using 1,3-diene-tethered ethynyl methylene cyclic carbamates as substrates, we were able to construct various cycloheptanoid-containing polycyclic scaffolds, which are present in many bioactive molecules. The cycloaddition products were rich in functionality that could undergo various chemical transformations. The synthetic utility of the method was illustrated by total synthesis of the natural products (±)-mint ketone and (±)-aphanamol I. Mechanistic studies indicated that the cycloadditions proceed by a concerted [4π+2π] mechanism and that an endo-selective pathway is favored.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202423405-sup-0001-misc_information.pdf13.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aF. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752–6756;
- 1bW. Wei, S. Cherukupalli, L. Jing, X. Liu, P. Zhan, Drug Discov. Today. 2020, 25, 1839–1845;
- 1cA. Yan, J. Gasteiger, J. Chem. Inf. Comput. Sci. 2003, 43, 429–434;
- 1dD. C. Kombo, K. Tallapragada, R. Jain, J. Chewning, A. A. Mazurov, J. D. Speake, T. A. Hauser, S. Toler, J. Chem. Inf. Model. 2013, 53, 327–342;
- 1eN. C. Firth, N. Brown, J. Blagg, J. Chem. Inf. Model. 2012, 52, 2516–2525.
- 2F. Lovering, MedChemComm. 2013, 4, 515–519.
- 3
- 3aG. Brieger, J. N. Bennett, Chem. Rev. 1980, 80, 63–97;
- 3bJ. D. Winkler, Chem. Rev. 1996, 96, 167–176;
- 3cK. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis, Angew. Chem. Int. Ed. 2002, 41, 1668–1698;
10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z CAS PubMed Web of Science® Google ScholarAngew. Chem. 2002, 114, 1742–1773.
- 4
- 4aD. Strübing, M. Beller, Topics in Organometallic Chemistry 2006, 18, 165–178;
- 4bJ. D. Ricker, L. M. Geary, Top. Catal. 2017, 60, 609–619;
- 4cB. Jaime, Chem. Soc. Rev. 2004, 33, 32–42.
- 5For reviews, see:Nummerierung?
- 5aT. V. Nguyen, J. M. Hartman, D. Enders, Synthesis. 2013, 45, 845–873;
- 5bK. T. de Oliveira, Stud. Nat. Prod. Chem. 2014, 42, 421–463;
- 5cH. Pellissier, Adv. Synth. Catal. 2018, 360, 1551–1583;
- 5dZ. Yin, Y. He, P. Chiu, Chem. Soc. Rev. 2018, 47, 8881–8924;
- 5eH. Lam, M. Lautens, Synthesis. 2020, 52, 2427–2449;
- 5fB. M. Trost, Z. Zuo, J. E. Schultz, Chem. 2020, 26, 15354–15377.
- 6For recent works on transition-metal catalyzed synthesis of seven-membered carbocycles, see:
- 6aM. Gulías, J. Durán, F. López, L. Castedo, J. L. Mascareñas, J. Am. Chem. Soc. 2007, 129, 11026–11027;
- 6bB. Trillo, F. López, M. Gulías, L. Castedo, J. L. Mascareñas, Angew. Chem. Int. Ed. 2008, 47, 951–954; Angew. Chem. 2008, 120, 965–968;
- 6cP. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348–6349;
- 6dI. Alonso, H. Faustino, F. López, J. L. Mascareñas, Angew. Chem. Int. Ed. 2011, 50, 11496–11500; Angew. Chem. 2011, 123, 11698–11702;
- 6eD. Shu, W. Song, X. Li, W. Tang, Angew. Chem. Int. Ed. 2013, 52, 3237–3240; Angew. Chem. 2013, 125, 3319–3322;
- 6fJ. Yang, P. Zhang, Z. Shen, Y. Zhou, Z.-X. Yu, Chem. 2023, 9, 1477–1494.
- 7For reviews of oxyallyl cations, see:
- 7aH. M. R. Hoffmann, Angew. Chem. 1973, 85, 877–894; Angew. Chem. Int. Ed. 1973, 12, 819–835;
- 7bR. Noyori, Y. Hayakawa, Org. React. 1983, 29, 163–344;
- 7cH. M. R. Hoffmann, Angew. Chem. 1984, 96, 29–48; Angew. Chem. Int. Ed. 1984, 23, 1–19;
- 7dJ. Mann, Tetrahedron 1986, 42, 4611–4659;
- 7eM. Harmata, Acc. Chem. Res. 2001, 34, 595–605;
- 7fM. Harmata, Chem. Commun. 2010, 46, 8886–8903;
- 7gM. Harmata, Chem. Commun. 2010, 46, 8904–8922;
- 7hA. G. Lohse, R. P. Hsung, Chem. Eur. J. 2011, 17, 3812–3822;
- 7iH. Li, J. Wu, Synthesis 2015, 47, 22–33.
- 8For (4+3) cycloaddition reactions of oxyallyl cations, see:
- 8aA. W. Fort, J. Am. Chem. Soc. 1962, 84, 4979–4981;
- 8bH. Takaya, S. Makino, Y. Hayakawa, R. Noyori, J. Am. Chem. Soc. 1978, 100, 1765–1777;
- 8cR. Noyori, F. Shimizu, K. Fukuta, H. Takaya, and Y. Hayakawa, J. Am. Chem. Soc. 1977, 99, 5196–5198;
- 8dM. Harmata, S. Elomari, C. L. Barnes, J. Am. Chem. Soc. 1996, 118, 2860–2871;
- 8eH. Xiong, R. P. Hsung, C. R. Berry, C. Rameshkumar, J. Am. Chem. Soc. 2001, 123, 7174–7175;
- 8fC. Rameshkumar, R. P. Hsung, Angew. Chem. 2004, 35, 22–032; Angew. Chem. Int. Ed. 2004, 43, 615–618;
- 8gW. K. Chung, S. K. Lam, B. Lo, L. L. Liu, W.-T. Wong, P. Chiu, J. Am. Chem. Soc. 2009, 131, 4556–4557;
- 8hJ. E. Antoline, E. H. Krenske, A. G. Lohse, K. N. Houk, R. P. Hsung, J. Am. Chem. Soc. 2011, 133, 14443–14451;
- 8iB. Lo, S. Lam, W.-T. Wong, P. Chiu, Angew. Chem. 2012, 124, 12286–12289; Angew. Chem. Int. Ed. 2012, 51, 12120–12123;
- 8jC. Fu, N. Lora, P. L. Kirchhoefer, D. R. Lee, E. Altenhofer, C. L. Barnes, N. L. Hungerford, E. H. Krenske, M. Harmata, Angew. Chem. 2017, 129, 14874–14879; Angew. Chem. Int. Ed. 2017, 56, 14682–14687;
- 8kJ. Ling, S. Lam, K.-H. Low, P. Chiu, Angew. Chem. Int. Ed. 2017, 56, 8879–8882; Angew. Chem. 2017, 129, 9005–9008;
- 8lJ. He, Z, Chen, W. Li, K.-H. Low, P. Chiu, Angew. Chem. Int. Ed. 2018, 57, 5253–5256; Angew. Chem. 2018, 130, 5351–5354;
- 8mY. Zheng, Y. Chen, Y. He, A. Rizzo, Y. Zhou, K.-H. Low, E. H. Krenske, P. Chiu, Angew. Chem. Int. Ed. 2024, 63, e202407059; Angew. Chem. 2024, 136, e202407059.
- 9For enantioselective (4+3) cycloaddition reactions of oxyallyl cations with furans, see:
- 9aM. Harmata, S. K. Ghosh, X. Hong, S. Wacharasindhu, P. Kirchhoefer, J. Am. Chem. Soc. 2003, 125, 2058–2059;
- 9bJ. Huang, R. P. Hsung, J. Am. Chem. Soc. 2005, 127, 50–51;
- 9cL. Villar, U. Uria, J. I. Martinez, L. Prieto, E. Reyes, L. Carrillo, J. L. Vicario, Angew. Chem. 2017, 129, 10671–10674;
10.1002/ange.201704804 Google ScholarAngew. Chem. Int. Ed. 2017, 56, 10535–10538;
- 9dS. M. Banik, A. Levina, A. M. Hyde, E. N. Jacobsen, Science 2017, 358, 761–764.
- 10For cycloaddition of oxyallyl cations to prepare five-membered carbocycles, see:
- 10aH. Li, R. P. Hughes, J. Wu, J. Am. Chem. Soc. 2014, 136, 6288–6296;
- 10bK. Masuya, K. Domon, K. Tanino, I. Kuwajima, J. Am. Chem. Soc. 1998, 120, 1724–1731;
- 10cE. H. Krenske, S. He, J. Huang, Y. Du, K. N. Houk, R. P. Hsung, J. Am. Chem. Soc. 2013, 135, 5242–5245;
- 10dY. Chen, J. Ling, A. B. Keto, Y. He, K.-H. Low, E. H. Krenske, P. Chiu, Angew. Chem. Int. Ed. 2022, 61, e202116099; Angew. Chem. 2022, 134, e202116099.
- 11For preliminary studies on 2-aminoallyl cations, see
- 11aR. Schmid, H. Schmid, Helv. Chim. Acta 1974, 57, 1883–1886;
- 11bJ. Lee, J. Oh, S.-J. Jin, J.-R. Choi, J. L. Atwood, J. K. Cha, J. Org. Chem. 1994, 59, 6955–6964;
- 11cH. Kim, C. Ziani-Cherif, J. Oh, D. Lee, J. K. Cha, J. Org. Chem. 1995, 60, 792–793;
- 11dA. S. Kende, H. Huang, Tetrahedron Lett. 1997, 38, 3353–3356.
- 12G. Prié, N. Prévost, H. Twin, S. A. Fernandes, J. F. Hayes, M. Shipman, Angew. Chem. Int. Ed. 2004, 43, 6517–6519; Angew. Chem. 2004, 43, 6517–6519.
- 13
- 13aL. Shen, Z. Lin, B. Guo, W. Zi, Nat. Synth. 2022, 1, 883–891;
- 13bL. Shen, Y. Zheng, Z. Lin, T. Qin, Z. huang, W. Zi, Angew. Chem. Int. Ed. 2023, 62, e202217051; Angew. Chem. 2023, 135, e202217051.
- 14For the synthesis of 5–5–7 fused ring systems by intramolecular (4+3) cycloadditions, see:
- 14aG. Pattenden, J. M. Winne, Tetrahedron Lett. 2009, 50, 73107–7313;
- 14bJ. L. Roizen, A. C. Jones, R. C. Smith, S. C. Virgil, B. M. Stoltz, J. Org. Chem. 2017, 82, 13051–13067.
- 15The X-ray crystallographic data have been deposited at the Cambridge Crystallographic Data Center (CCDC) under deposition number CCDC 2256295 (for 2 a), 2262588 (for 2 c), 2258059 (for 2 d), 2249868 (for 2 e), 2265926 (for 2 j), 2240056 (for 2 m), and 2309782 (for 2 r) can be obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.
- 16I. Kim, C. Lee, Angew. Chem. Int. Ed. 2013, 52, 10023–10026; Angew. Chem. 2013, 125, 10207–10210.
- 17K. Okada, K. Okubo, N. Morita, M. Oda, Tetrahedron Lett. 1992, 33, 7377–7380.
- 18For examples of dinuclear copper catalysts, see:
- 18aR.-Z. Li, D.-Q. Liu, D. Niu, Nat. Catal. 2020, 3, 672–680;
- 18bK. Nakajima, M. Shibata, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 2472–2475.
- 19For reviews on Cu-catalyzed propargylic decarboxylation substitution, see:
- 19aY. Miyake, S. Uemura, Y. Nishibayashi, ChemCatChem 2009, 1, 342–356;
- 19bR. Roy, S. Saha, RSC Adv. 2018, 8, 31129–31193;
- 19cD.-Y. Zhang, X.-P. Hu, Tetrahedron Lett. 2015, 56, 2837–295.
- 20For selected reports on Cu-catalyzed propargylic decarboxylation substitution, see:
- 20aF.-L. Zhu, Y. Zou, D.-Y. Zhang, Y.-H. Wang, X.-H. Hu, S. Chen, J. Xu, X.-P. Hu, Angew. Chem. Int. Ed. 2014, 53, 1410–1414; Angew. Chem. 2014, 126, 1434–1438;
- 20bK. Nakajima, M. Shibata, Y. Nishibayashi, J. Am. Chem. Soc. 2015, 137, 2472–2475;
- 20cK. Zhang, L.-Q. Lu, S. Yao, J.-R. Chen, D.-Q. Shi, W.-J. Xiao, J. Am. Chem. Soc. 2015, 139, 12847–12854;
- 20dK. Tsuchida, Y. Senda, K. Nakajima, Y. Nishibayashi, Angew. Chem. 2016, 128, 9880–9884;
10.1002/ange.201604182 Google ScholarAngew. Chem. Int. Ed. 2016, 55, 9728–9732;
- 20eK. Tsuchida, Y. Senda, K. Nakajima, Y. Nishibayashi, Angew. Chem. Int. Ed. 2016, 55, 9728–9732; Angew. Chem. 2016, 128, 9880–9884;
- 20fR.-Z. Li, H. Tang, K. R. Yang, L.-Q. Wan, X. Zhang, J. Liu, Z. Fu, D. Niu, Angew. Chem. 2017, 129, 7319–7323; Angew. Chem. Int. Ed. 2017, 56, 7213–7217;
- 20gJ. E. Gómez, W. Guo, S. Gaspa, A. W. Kleij, Angew. Chem. Int. Ed. 2017, 56, 15035–15038; Angew. Chem. 2017, 129, 15231–15234;
- 20hJ. E. Gómez, À. Cristòfol, A. W. Kleij, Angew. Chem. Int. Ed. 2019, 58, 3903–3907; Angew. Chem. 2019, 131, 3943–3947;
- 20iW. Guo, L. Zuo, M. Cui, B. Yan, S. Ni, J. Am. Chem. Soc. 2021, 143, 7629–7634.
- 21For a review on copper-catalyzed cycloaddition involving propargylic decarboxylation, see: X.-H. Hu, Z.-T. Liu, L. Shao, X.-P. Hu, Synthesis 2015, 47, 913–923; for selected examples, see:
- 21aC. Zhang, X.-H. Hu, Y.-H. Wang, Z. Zheng, J. Xu, X.-P. Hu, J. Am. Chem. Soc. 2012, 134, 9585–9588;
- 21bF.-L. Zhu, Y.-H. Wang, D.-Y. Zhang, J. Xu, X.-P. Hu, Angew. Chem. Int. Ed. 2014, 53, 10223–10227; Angew. Chem. 2014, 126, 10387–10391;
- 21cD.-Y. Zhang, L. Shao, J. Xu, X.-P. Hu, ACS Catal. 2015, 5, 5026–5030;
- 21dL. Shao, Y.-H. Wang, D.-Y. Zhang, J. Xu, X.-P. Hu, Angew. Chem. Int. Ed. 2016, 55, 5014–5018; Angew.Chem. 2016, 128, 5098–5102;
- 21eQ. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360–8363;
- 21fJ. Song, Z.-J. Zhang, L.-Z. Gong, Angew. Chem. Int. Ed. 2018, 57, 3269–3281; Angew. Chem. 2018, 130, 3325–3337.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.