Isoreticular Tolerance and Phase Selection in the Synthesis of Multi-Module Metal–Organic Frameworks for Gas Separation and Electrocatalytic OER
Dr. Yuchen Xiao
Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Xianhui Bu
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840 USA
Search for more papers by this authorCorresponding Author
Prof. Pingyun Feng
Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521 USA
Search for more papers by this authorDr. Yuchen Xiao
Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521 USA
Search for more papers by this authorCorresponding Author
Prof. Xianhui Bu
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840 USA
Search for more papers by this authorCorresponding Author
Prof. Pingyun Feng
Department of Chemistry, University of California, 900 University Ave, Riverside, CA 92521 USA
Search for more papers by this authorAbstract
Although metal–organic frameworks are coordination-driven assemblies, the structural prediction and design using metal-ligand interactions can be unreliable due to other competing interactions. Leveraging non-coordination interactions to develop porous assemblies could enable new materials and applications. Here, we use a multi-module MOF system to explore important and pervasive impact of ligand-ligand interactions on metal-ligand as well as ligand-ligand co-assembly process. It is found that ligand-ligand interactions play critical roles on the scope or breakdown of isoreticular chemistry. With cooperative di- and tri-topic ligands, a family of Ni-MOFs has been synthesized in various structure types including partitioned MIL-88-acs (pacs), interrupted pacs (i-pacs), and UMCM-1-muo. A new type of isoreticular chemistry on the muo platform is established between two drastically different chemical systems. The gas sorption and electrocatalytic studies were performed that reveal excellent performance such as high C2H2/CO2 selectivity of 21.8 and high C2H2 uptake capacity of 114.5 cm3/g at 298 K and 1 bar.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202422635-sup-0001-misc_information.pdf20.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aS. J. Lee, S. G. Telfer, Angew. Chem. Int. Ed. 2023, 62, e202306341;
- 1bX. Li, J. Liu, K. Zhou, S. Ullah, H. Wang, J. Zou, T. Thonhauser, J. Li, J. Am. Chem. Soc. 2022, 144, 21702–21709;
- 1cM. J. Kalmutzki, N. Hanikel, O. M. Yaghi, Sci. Adv. 2018, 4, eaat9180.
- 2
- 2aM. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O′Keeffe, O. M. Yaghi, Science 2002, 295, 469–472;
- 2bH. Cui, Y. Ye, T. Liu, Z. A. Alothman, O. Alduhaish, R.-B. Lin, B. Chen, Inorg. Chem. 2020, 59, 17143–17148;
- 2cA. Dutta, Y. Pan, J.-Q. Liu, A. Kumar, Coord. Chem. Rev. 2021, 445, 214074;
- 2dH. Jiang, D. Alezi, M. Eddaoudi, Nat. Rev. Mater. 2021, 6, 466–487;
- 2eZ. Chen, K. O. Kirlikovali, P. Li, O. K. Farha, Acc. Chem. Res. 2022, 55, 579–591.
- 3
- 3aH. Yang, Y. Chen, C. Dang, A. N. Hong, P. Feng, X. Bu, J. Am. Chem. Soc. 2022, 144, 20221–20226;
- 3bY. Xiao, Y. Chen, W. Wang, H. Yang, A. N. Hong, X. Bu, P. Feng, J. Am. Chem. Soc. 2023, 145, 10980–10986;
- 3cW. Wang, H. Yang, Y. Chen, X. Bu, P. Feng, J. Am. Chem. Soc. 2023, 145, 17551–17556;
- 3dY. Chen, W. Wang, S. Alston, Y. Xiao, P. Ajayan, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2025, 64, e202415576;
- 3eK. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin, M. Eddaoudi, Chem. Soc. Rev. 2017, 46, 3402–3430.
- 4
- 4aV. Guillerm, M. Eddaoudi, Acc. Chem. Res. 2021, 54, 3298–3312;
- 4bH. Yang, F. Peng, A. N. Hong, Y. Wang, X. Bu, P. Feng, J. Am. Chem. Soc. 2021, 143, 14470–14474.
- 5
- 5aL. K. Macreadie, R. Babarao, C. J. Setter, S. J. Lee, O. T. Qazvini, A. J. Seeber, J. Tsanaktsidis, S. G. Telfer, S. R. Batten, M. R. Hill, Angew. Chem. Int. Ed. 2020, 59, 6090–6098;
- 5bC. S. Smoljan, R. Q. Snurr, O. K. Farha, J. Mater. Res. 2024, 39, 1047–1056;
- 5cK. B. Idrees, K. O. Kirlikovali, C. Setter, H. Xie, H. Brand, B. Lal, F. Sha, C. S. Smoljan, X. Wang, T. Islamoglu, L. K. Macreadie, O. K. Farha, J. Am. Chem. Soc. 2023, 145, 23433–23441;
- 5dB. Lal, K. B. Idrees, H. Xie, C. S. Smoljan, S. Shafaie, T. Islamoglu, O. K. Farha, Angew. Chem. Int. Ed. 2023, 62, e202219053;
- 5eL. K. Macreadie, K. B. Idrees, C. S. Smoljan, O. K. Farha, Angew. Chem. Int. Ed. 2023, 62, e202304094;
- 5fC. S. Smoljan, Z. Li, H. Xie, C. J. Setter, K. B. Idrees, F. A. Son, F. Formalik, S. Shafaie, T. Islamoglu, L. K. Macreadie, R. Q. Snurr, O. K. Farha, J. Am. Chem. Soc. 2023, 145, 6434–6441;
- 5gC. S. Smoljan, F. Sha, P. Campitelli, H. Xie, M. A. Eddaoudi, M. R. Mian, C. Di Nicola, K. O. Kirlikovali, R. Q. Snurr, O. K. Farha, Cryst. Growth Des. 2024, 24, 3941–3948;
- 5hY. Xiao, A. N. Hong, Y. Chen, H. Yang, Y. Wang, X. Bu, P. Feng, Small 2023, 19, 2205119;
- 5iY. Chen, H. Yang, W. Wang, X. Li, Y. Wang, A. N. Hong, X. Bu, P. Feng, Small 2023, 19, 2303540;
- 5jY. Xiao, Y. Chen, W. Wang, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2024, 63, e202403698.
- 6
- 6aS.-T. Zheng, X. Zhao, S. Lau, A. Fuhr, P. Feng, X. Bu, J. Am. Chem. Soc. 2013, 135, 10270–10273;
- 6bX. Zhao, X. Bu, Q.-G. Zhai, H. Tran, P. Feng, J. Am. Chem. Soc. 2015, 137, 1396–1399;
- 6cQ.-G. Zhai, X. Bu, C. Mao, X. Zhao, L. Daemen, Y. Cheng, A. J. Ramirez-Cuesta, P. Feng, Nat. Commun. 2016, 7, 13645;
- 6dX. Zhao, X. Bu, E. T. Nguyen, Q.-G. Zhai, C. Mao, P. Feng, J. Am. Chem. Soc. 2016, 138, 15102–15105;
- 6eX. Zhao, C. Mao, K. T. Luong, Q. Lin, Q.-G. Zhai, P. Feng, X. Bu, Angew. Chem. Int. Ed. 2016, 55, 2768–2772;
- 6fY. Wang, X. Zhao, H. Yang, X. Bu, Y. Wang, X. Jia, J. Li, P. Feng, Angew. Chem. Int. Ed. 2019, 58, 6316–6320;
- 6gY. Wang, X. Jia, H. Yang, Y. Wang, X. Chen, A. N. Hong, J. Li, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2020, 59, 19027–19030;
- 6hH. Yang, Y. Wang, R. Krishna, X. Jia, Y. Wang, A. N. Hong, C. Dang, H. E. Castillo, X. Bu, P. Feng, J. Am. Chem. Soc. 2020, 142, 2222–2227;
- 6iA. N. Hong, H. Yang, T. Li, Y. Wang, Y. Wang, X. Jia, A. Zhou, E. Kusumoputro, J. Li, X. Bu, P. Feng, ACS Appl. Mater. Interfaces 2021, 13, 52160–52166;
- 6jB. Zhu, J.-W. Cao, S. Mukherjee, T. Pham, T. Zhang, T. Wang, X. Jiang, K. A. Forrest, M. J. Zaworotko, K.-J. Chen, J. Am. Chem. Soc. 2021, 143, 1485–1492;
- 6kA. N. Hong, E. Kusumoputro, Y. Wang, H. Yang, Y. Chen, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2022, 61, e202116064;
- 6lA. N. Hong, Y. Wang, Y. Chen, H. Yang, E. Kusumoputro, X. Bu, P. Feng, Chem. Eur. J. 2023, 29, e202203547;
- 6mY. Xiao, Y. Chen, A. N. Hong, X. Bu, P. Feng, Angew. Chem. Int. Ed. 2023, 62, e202300721;
- 6nW. Wang, Y. Chen, P. Feng, X. Bu, Adv. Mater. 2024, 36, 2403834;
- 6oP. Ajayan, W. Wang, Y. Chen, X. Bu, P. Feng, Adv. Mater. 2024, 36, 2408042.
- 7Deposition Numbers 2387538 (for m-Ni3-bco-tppy), 2387539 (for m-Ni3-bco-tpbz (condition 1)), 2387540 (for m-Ni3-bco-tpbz (condition 2)), 2387541 (for m-Ni3-bco-tpbz (condition 5)), 2387542 (for m-Ni3-bco-tpbz (condition 6)), 2387543 (for m-Ni3-cdc-tppy), 2387545 (for m-Ni3-cdc-tpbz), 2387546 (for p-Ni3-bcp-tpbz (condition 1)), 2387547 (for p-Ni3-bcp-tpbz (condition 2)), 2387548 (for p-Ni3-bdc-tppy), 2387549 (for p-Ni3-bdc-tpbz), 2387550 (for i-Ni3-cdc-tpt), 2387552 (for i-Ni3-bdc-tpt), 2387555 (for h-Co-bco-tpbz), 2387558 (for h-Ni-bco-tpbz), 2387564 (for z-Ni-bdc-tpa), 2387565 (for s-Ni2-bco), 2387566 (for t-Ni2-bco-tpt (condition 1)), 2387568 (for t-Ni2-bco-tpt (condition 3)) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 8
- 8aK. Koh, A. G. Wong-Foy, A. J. Matzger, Angew. Chem. Int. Ed. 2008, 47, 677–680;
- 8bK. Koh, A. G. Wong-Foy, A. J. Matzger, J. Am. Chem. Soc. 2010, 132, 15005–15010;
- 8cB. Mu, P. M. Schoenecker, K. S. Walton, J. Phys. Chem. C 2010, 114, 6464–6471;
- 8dK. K. Tanabe, C. A. Allen, S. M. Cohen, Angew. Chem. Int. Ed. 2010, 49, 9730–9733;
- 8eM. Kim, J. A. Boissonnault, C. A. Allen, P. V. Dau, S. M. Cohen, Dalton Trans. 2012, 41, 6277–6282;
- 8fC.-C. Liang, Z.-L. Shi, C.-T. He, J. Tan, H.-D. Zhou, H.-L. Zhou, Y. Lee, Y.-B. Zhang, J. Am. Chem. Soc. 2017, 139, 13300–13303;
- 8gC.-S. Liu, M. Chen, J.-Y. Tian, L. Wang, M. Li, S.-M. Fang, X. Wang, L.-M. Zhou, Z.-W. Wang, M. Du, Chem. Eur. J. 2017, 23, 3885–3890;
- 8hS. Ullah, M. A. Bustam, M. A. Assiri, A. G. Al-Sehemi, G. Gonfa, A. Mukhtar, F. A. Abdul Kareem, M. Ayoub, S. Saqib, N. B. Mellon, Microporous Mesoporous Mater. 2020, 294, 109844.
- 9
- 9aR. Thakuria, N. K. Nath, B. K. Saha, Cryst. Growth Des. 2019, 19, 523–528;
- 9bK. Carter-Fenk, J. M. Herbert, Chem. Sci. 2020, 11, 6758–6765.
- 10
- 10aE. C. Constable, G. Zhang, C. E. Housecroft, J. A. Zampese, CrystEngComm 2011, 13, 6864–6870;
- 10bO. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341;
- 10cA. Spek, J. Appl. Crystallogr. 2003, 36, 7–13;
- 10dW. Fan, S. Yuan, W. Wang, L. Feng, X. Liu, X. Zhang, X. Wang, Z. Kang, F. Dai, D. Yuan, D. Sun, H.-C. Zhou, J. Am. Chem. Soc. 2020, 142, 8728–8737;
- 10eD. Wang, B. Liu, S. Yao, T. Wang, G. Li, Q. Huo, Y. Liu, Chem. Commun. 2015, 51, 15287–15289;
- 10fA. L. Myers, J. M. Prausnitz, AlChE J. 1965, 11, 121–127;
- 10gD. Hu, X. Wang, X. Chen, Y. Wang, A. N. Hong, J. Zhong, X. Bu, P. Feng, T. Wu, J. Mater. Chem. A 2020, 8, 11255–11260;
- 10hR. D. Shannon, Acta Crystallogr. Sect. A 1976, 32, 751–767.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.