Promoting Alcohols Electrooxidation Coupled with Hydrogen Production via Asymmetric Pulse Potential Strategy
Tian Xia
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorJiangrong Yang
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorQinghui Ren
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYu Fu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZhiyuan Zhang
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorCorresponding Author
Prof. Zhenhua Li
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorCorresponding Author
Prof. Mingfei Shao
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorProf. Xue Duan
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorTian Xia
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorJiangrong Yang
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
These authors contributed equally to this work.
Search for more papers by this authorQinghui Ren
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorYu Fu
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Search for more papers by this authorZhiyuan Zhang
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorCorresponding Author
Prof. Zhenhua Li
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorCorresponding Author
Prof. Mingfei Shao
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorProf. Xue Duan
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 323000 China
Search for more papers by this authorAbstract
Electrocatalytic organic oxidation coupled with hydrogen (H2) production emerges as a profitable solution to simultaneously reduce overall energy consumption of H2 production and synthetic high-value chemicals. Noble metal catalysts are highly efficient electrocatalysts in oxidation reactions, but they deactivate easily weakening the benefit in actual production. Herein, we report a universal asymmetric pulse potential strategy to achieve long-term stable operation of noble metals for various alcohol oxidation reactions and noble metal catalysts. For example, by pulsed potentials between 0.8 V and 0 V vs. RHE, palladium (Pd)-catalyzed glycerol (GLY) electrooxidation can continuously proceed for more than 2800 h with glyceric acid (GLA) selectivity of >70 %. Whereas, Pd electrocatalyst becomes nearly deactivated within 6 h of reaction under conventional potentiostatic strategy. Experimental and theoretical calculation results reveal that the generated electrophilic OH* from H2O/OH− oxidation on Pd (denoted as Pd−OH*) acts as main active species for GLY oxidation. However, Pd−OH* is prone to be oxidized to PdOx resulting in performance decay. When a short reduction potential (e.g., 0 V vs. RHE for 5 s) is powered, PdOx can be reversibly reduced to restore the current. Moreover, we tested the feasibility of this strategy in a flow electrolyzer, verifying the practical application potential.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420992-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aR. F. Service, Science 2023, 379, 1075;
- 1bE. T. C. Vogt, B. M. Weckhuysen, Nature 2024, 629, 295–306.
- 2
- 2aZ. Feng, C. Dai, P. Shi, X. Lei, R. Guo, B. Wang, X. Liu, J. You, Chem. Eng. J. 2024, 485, 149992;
- 2bH. Li, Y. Lin, J. Duan, Q. Wen, Y. Liu, T. Zhai, Chem. Soc. Rev. 2024, 53, 10709–10740;
- 2cS. Yang, X. Liu, S. Li, W. Yuan, L. Yang, T. Wang, H. Zheng, R. Cao, W. Zhang, Chem. Soc. Rev. 2024, 53, 5593–5625.
- 3
- 3aY. Song, K. Ji, H. Duan, M. Shao, Exploration 2021, 1, 20210050;
- 3bL. Ma, Y. Miao, J. Yang, Y. Fu, Y. Yan, Z. Zhang, Z. Li, M. Shao, Adv. Energy Mater. 2024, 14, 2401061;
- 3cJ. Yang, T. Xia, H. Li, H. Yan, X. Kong, Z. Li, M. Shao, X. Duan, Angew. Chem. Int. Ed. 2024, e202413457;
- 3dJ. Ren, L. Chen, H. Wang, W. Tian, Z. Yuan, Energy Environ. Sci. 2024, 17, 49–113;
- 3eY. Lu, M. Chen, Y. Wang, C. Yang, Y. Zou, S. Wang, Chem 2024, 10, 1371–1390;
- 3fR. Ge, Y. Wang, Z. Li, M. Xu, S. M. Xu, H. Zhou, K. Ji, F. Chen, J. Zhou, H. Duan, Angew. Chem. Int. Ed. 2022, 61, e202200211.
- 4
- 4aK. Veeramani, G. Janani, J. Kim, S. Surendran, J. Lim, S. C. Jesudass, S. Mahadik, H. lee, T.-H. Kim, J. K. Kim, U. Sim, Renewable Sustainable Energy Rev. 2023, 177, 113227;
- 4bJ. Li, H. Duan, Chem 2024, 10, 3008–3039;
- 4cY. Li, X. Wei, L. Chen, J. Shi, Angew. Chem. Int. Ed. 2021, 60, 19550–19571.
- 5X. Hu, J. Lu, Y. Liu, L. Chen, X. Zhang, H. Wang, Environ. Chem. Lett. 2023, 21, 2825–2861.
- 6Y. Yan, H. Zhou, S. M. Xu, J. Yang, P. Hao, X. Cai, Y. Ren, M. Xu, X. Kong, M. Shao, Z. Li, H. Duan, J. Am. Chem. Soc. 2023, 145, 6144–6155.
- 7
- 7aL. Miao, W. Jia, X. Cao, L. Jiao, Chem. Soc. Rev. 2024, 53, 2771–2807;
- 7bH. Fu, Z. Chen, X. Chen, F. Jing, H. Yu, D. Chen, B. Yu, Y. H. Hu, Y. Jin, Adv. Sci. 2023, e2306132.
- 8
- 8aK. Shi, D. Si, X. Teng, L. Chen, J. Shi, Nat. Commun. 2024, 15, 2899;
- 8bF. Liu, X. Gao, R. Shi, Z. Guo, E. C. M. Tse, Y. Chen, Angew. Chem. Int. Ed. 2023, 62, e202300094.
- 9
- 9aB. Huang, Y. Ge, A. Zhang, S. Zhu, B. Chen, G. Li, Q. Yun, Z. Huang, Z. Shi, X. Zhou, L. Li, X. Wang, G. Wang, Z. Guan, L. Zhai, Q. Luo, Z. Li, S. Lu, Y. Chen, C. S. Lee, Y. Han, M. Shao, H. Zhang, Adv. Mater. 2023, 35, e2302233;
- 9bA. C. Garcia, M. J. Kolb, C. van Nierop y Sanchez, J. Vos, Y. Y. Birdja, Y. Kwon, G. Tremiliosi-Filho, M. T. M. Koper, ACS Catal. 2016, 6, 4491–4500.
- 10E. A. Moges, C. Y. Chang, W. H. Huang, K. Lakshmanan, Y. A. Awoke, C. W. Pao, M. C. Tsai, W. N. Su, B. J. Hwang, Adv. Funct. Mater. 2022, 32, 2206887.
- 11
- 11aX. Mo, X. Gao, A. V. Gillado, H. Y. Chen, Y. Chen, Z. Guo, H. L. Wu, E. C. M. Tse, ACS Nano 2022, 16, 12202–12213;
- 11bH. Wang, H. Zheng, L. Ling, Q. Fang, L. Jiao, L. Zheng, Y. Qin, Z. Luo, W. Gu, W. Song, C. Zhu, ACS Nano 2022, 16, 21266–21274;
- 11cY. Qiu, J. Zhang, J. Jin, J. Sun, H. Tang, Q. Chen, Z. Zhang, W. Sun, G. Meng, Q. Xu, Y. Zhu, A. Han, L. Gu, D. Wang, Y. Li, Nat. Commun. 2021, 12, 5273.
- 12T. Liu, J. Wang, X. Yang, M. Gong, J. Energy Chem. 2021, 59, 69–82.
- 13
- 13aL. Xu, X. Ma, L. Wu, X. Tan, X. Song, Q. Zhu, C. Chen, Q. Qian, Z. Liu, X. Sun, S. Liu, B. Han, Angew. Chem. Int. Ed. 2022, 61, e202210375;
- 13bX. Zhang, T. Liu, C. Liu, D. Zheng, J. Huang, Q. Liu, W. Yuan, Y. Yin, L. Huang, M. Xu, Y. Li, Z. Gu, J. Am. Chem. Soc. 2023, 145, 2195–2206;
- 13cT. Zhang, J. Knezevic, M. Zhu, J. Hong, R. Zhou, Q. Song, L. Ding, J. Sun, D. Liu, K. K. Ostrikov, R. Zhou, P. J. Cullen, J. Am. Chem. Soc. 2023, 145, 28233–28239;
- 13dJ. Timoshenko, A. Bergmann, C. Rettenmaier, A. Herzog, R. M. Arán-Ais, H. S. Jeon, F. T. Haase, U. Hejral, P. Grosse, S. Kühl, E. M. Davis, J. Tian, O. Magnussen, B. Roldan Cuenya, Nat. Catal. 2022, 5, 259–267;
- 13eA. R. Woldu, P. Talebi, A. G. Yohannes, J. Xu, X. D. Wu, S. Siahrostami, L. Hu, X. C. Huang, Angew. Chem. Int. Ed. 2023, 62, e202301621.
- 14Y. Zuo, V. Mastronardi, A. Gamberini, M. I. Zappia, T. H. Le, M. Prato, S. Dante, S. Bellani, L. Manna, Adv. Mater. 2024, 36, e2312071.
- 15
- 15aY. Bu, C. Wang, W. Zhang, X. Yang, J. Ding, G. Gao, Angew. Chem. Int. Ed. 2023, 62, e202217337;
- 15bP. Li, R. Li, Y. Liu, M. Xie, Z. Jin, G. Yu, J. Am. Chem. Soc. 2023, 145, 6471–6479;
- 15cY. Huang, C. He, C. Cheng, S. Han, M. He, Y. Wang, N. Meng, B. Zhang, Q. Lu, Y. Yu, Nat. Commun. 2023, 14, 7368.
- 16W. Chen, L. Zhang, L. Xu, Y. He, H. Pang, S. Wang, Y. Zou, Nat. Commun. 2024, 15, 2420.
- 17
- 17aY. Ding, W. Zhou, J. Li, J. Wang, L. Xie, X. Meng, J. Gao, F. Sun, G. Zhao, Y. Qin, ACS Energy Lett. 2023, 8, 3122–3130;
- 17bM. Guo, L. Fang, L. Zhang, M. Li, M. Cong, X. Guan, C. Shi, C. Gu, X. Liu, Y. Wang, X. Ding, Angew. Chem. Int. Ed. 2023, 62, e202217635.
- 18
- 18aJ. Wu, X. Liu, Y. Hao, S. Wang, R. Wang, W. Du, S. Cha, X. Ma, X. Yang, M. Gong, Angew. Chem. Int. Ed. 2023, 62, e202216083;
- 18bL. Fan, Y. Ji, G. Wang, J. Chen, K. Chen, X. Liu, Z. Wen, J. Am. Chem. Soc. 2022, 144, 7224–7235;
- 18cW. Luo, H. Tian, Q. Li, G. Meng, Z. Chang, C. Chen, R. Shen, X. Yu, L. Zhu, F. Kong, X. Cui, J. Shi, Adv. Funct. Mater. 2023, 34, 2306995;
- 18dJ. Ma, X. Wang, J. Song, Y. Tang, T. Sun, L. Liu, J. Wang, J. Wang, M. Yang, Angew. Chem. Int. Ed. 2024, 63, e202319153.
- 19A. J. Martín, S. Mitchell, C. Mondelli, S. Jaydev, J. Pérez-Ramírez, Nat. Catal. 2022, 5, 854–866.
- 20F. Yang, J. Ye, Q. Yuan, X. Yang, Z. Xie, F. Zhao, Z. Zhou, L. Gu, X. Wang, Adv. Funct. Mater. 2020, 30, 1908235.
- 21H. Lv, Y. Wang, A. Lopes, D. Xu, B. Liu, Appl. Catal. B 2019, 249, 116–125.
- 22C. Li, F. Wang, J. Zhu, J. C. Yu, Appl. Catal. B 2010, 100, 433–439.
- 23D. Kim, C. Zhou, M. Zhang, M. Cargnello, Proc. Natl. Acad. Sci. USA 2021, 118.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.