Alloying Strategy Regulating Size and Electronic Structure of Mo0.25Nb0.75Se2 to Achieve High-Performance Lithium−Sulfur Batteries
Dr. Jia Yuan
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorDr. Peng Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Ning Song
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorYu Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Jizhen Ma
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Shenglin Xiong
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Xiaogang Li
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Jinkui Feng
School of Materials Science and Engineering, Shandong University, Jinan, 250061 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Baojuan Xi
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorDr. Jia Yuan
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - original draft (lead), Writing - review & editing (equal)
Search for more papers by this authorDr. Peng Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Ning Song
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorYu Wang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Jizhen Ma
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Shenglin Xiong
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorDr. Xiaogang Li
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorProf. Jinkui Feng
School of Materials Science and Engineering, Shandong University, Jinan, 250061 P. R. China
Contribution: Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Baojuan Xi
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 P. R. China
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
The utilization of catalysts in lithium−-sulfur batteries has proven to be an efficacious avenue for enhancing the kinetics of polysulfide conversion. Specially, the size and electronic structure of catalysts play a pivotal role in harnessing the active sites and intrinsic catalysis activity. Outstanding MoSe2 and NbSe2 are were selected from 16 universal transition metal selenides based on the proposed binary descriptor. Then, an alloying strategy is was devised to prepare Mo0.25Nb0.75Se2 flakelets for further improvement of the intrinsic catalysis. The integration of density functional theory calculations and electrochemical analysis demonstrates that alloying Mo with Nb can regulate the surface energy and indexes of band match and lattice mismatch, thereby enabling Mo0.25Nb0.75Se2 to possess a small size, suitable adsorption energy and low reaction energy barrier. This optimization enhances the catalysis of sulfur reduction/evolution reaction and the reversible deposition/stripping of lithium. Consequently, an assembled Ah-level pouch cell is realized with dramatic cycle stability. With the electrolyte/sulfur ratio of 2.36 μL mg S−1, the cell can deliver a high energy density of up to 505.4 Wh kgtotal−1. This work pioneers a universal strategy for sculpting the geometric configurations and electronic structures of catalysts, to achieve enhanced catalytic activity and precise interpretation of structure–activity relationships.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
Research data are not shared.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420866-sup-0001-misc_information.pdf3.2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1S. Evers, L. F. Nazar, Acc. Chem. Res. 2013, 46, 1135.
- 2H. B. Yao, K. Yan, W. Li, G. Zheng, D. Kong, Z. W. Seh, V. K. Narasimhan, Z. Liang, Y. Cui, Energy Environ. Sci. 2014, 7, 3381.
- 3C. Lu, R. Fang, X. Chen, Adv. Mater. 2020, 32, e1906548.
- 4J. Qian, Y. Xing, Y. Yang, Y. Li, K. Yu, W. Li, T. Zhao, Y. Ye, L. Li, F. Wu, R. Chen, Adv. Mater. 2021, 33, e2100810.
- 5Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Adv. Mater. 2020, 32, e1904876.
- 6P. Wang, Z. Zhang, N. Song, X. An, J. Liu, J. Feng, B. Xi, S. Xiong, CCS Chem. 2023, 5, 397.
- 7
- 7aN. Shi, B. Xi, J. Liu, Z. Zhang, N. Song, W. Chen, J. Feng, S. Xiong, Adv. Funct. Mater. 2022, 32, 2111586;
- 7bC. Wei, B. Xi, P. Wang, Z. Wang, X. An, K. Tian, J. Feng, S. Xiong, Adv. Energy Sustainability Res. 2023, 4, 2300103.
- 8Y. Wang, P. Wang, J. Yuan, N. Song, X. An, X. Ma, J. Feng, B. Xi, S. Xiong, Small 2023, 19, 2208281.
- 9C. Wei, Z. Wang, P. Wang, X. Zhang, X. An, J. Feng, B. Xi, S. Xiong, Sci. Bull. 2024, 69, 2059.
- 10D. Zhu, T. Long, B. Xu, Y. Zhao, H. Hong, R. Liu, F. Meng, J. Liu, J. Energy Chem. 2021, 57, 41.
- 11J. Yuan, B. Xi, P. Wang, Z. Zhang, N. Song, X. An, J. Liu, J. Feng, S. Xiong, Small 2022, 18, 2203947.
- 12J. Mao, D. Niu, G. Huang, X. Jin, C. Wei, J. Cai, Y. Li, J. Shi, Sci. China Mater. 2022, 65, 2453.
- 13P. Wang, B. Xi, Z. Zhang, M. Huang, J. Feng, S. Xiong, Angew. Chem. Int. Ed. 2021, 61, e202116048.
- 14Z. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 2020, 13, 1856.
- 15L. Chen, Y. Sun, X. Wei, L. Song, G. Tao, X. Cao, D. Wang, G. Zhou, Y. Song, Adv. Mater. 2023, e2300771.
- 16D. Lei, W. Shang, X. Zhang, Y. Li, S. Qiao, Y. Zhong, X. Deng, X. Shi, Q. Zhang, C. Hao, X. Song, F. Zhang, ACS Nano 2021, 15, 20478.
- 17W. Yao, J. Xu, Y. Cao, Y. Meng, Z. Wu, L. Zhan, Y. Wang, Y. Zhang, I. Manke, N. Chen, C. Yang, R. Chen, ACS Nano 2022, 16, 10783.
- 18Z. Ye, Y. Jiang, T. Yang, L. Li, F. Wu, R. Chen, Adv. Sci. 2021, 9, 2103456.
- 19M. Yousaf, U. Naseer, I. Ali, Y. Li, W. Aftab, A. Mahmood, N. Mahmood, P. Gao, Y. Jiang, S. Guo, Sci. China Mater. 2021, 65, 559.
- 20Q. Liang, S. Wang, Y. Yao, P. Dong, H. Song, Adv. Funct. Mater. 2023, 33, 2300825.
- 21L. Feng, P. Yu, X. Fu, Z.-M. Zhang, K. Davey, Y. Wang, Z. Guo, W. Yang, ACS Nano 2022, 16, 7982.
- 22D. Yang, Z. Liang, C. Zhang, J. J. Biendicho, M. Botifoll, M. C. Spadaro, Q. Chen, M. Li, A. Ramon, A. O. Moghaddam, J. Llorca, J. Wang, J. R. Morante, J. Arbiol, S. L. Chou, A. Cabot, Adv. Energy Mater. 2021, 11, 2101250.
- 23C. Wei, B. Xi, P. Wang, Z. Wang, X. An, Y. Li, J. Feng, S. Xiong, Inorg. Chem. 2024, 63, 8853.
- 24C. Y. Zhang, C. Zhang, J. L. Pan, G. W. Sun, Z. Shi, C. Li, X. Chang, G. Z. Sun, J. Y. Zhou, A. Cabot, eScience 2022, 2, 405.
- 25M. Wang, Y. Zhu, Y. Sun, Y. Zhao, X. Yang, X. Wang, Y. Song, H. Ci, J. Sun, Adv. Funct. Mater. 2022, 33, 2211978.
- 26B. Li, P. Wang, B. Xi, N. Song, X. An, W. Chen, J. Feng, S. Xiong, Nano Res. 2022, 15, 8972.
- 27M. Wang, Z. Sun, H. Ci, Z. Shi, L. Shen, C. Wei, Y. Ding, X. Yang, J. Sun, Angew. Chem. Int. Ed. 2021, 60, 24558.
- 28W. Wang, F. Xiong, S. Zhu, J. Chen, J. Xie, Q. An, eScience 2022, 2, 278.
- 29Z. Li, I. Sami, J. Yang, J. Li, R. V. Kumar, M. Chhowalla, Nat. Energy 2023, 8, 84.
- 30Y. Xie, W. Zheng, J. Ao, Y. Shao, X. Huang, H. Li, S. Cheng, X. Wang, Energy Storage Mater. 2023, 62, 102925.
- 31Z. Han, R. Gao, T. Wang, S. Tao, Y. Jia, Z. Lao, M. Zhang, J. Zhou, C. Li, Z. Piao, X. Zhang, G. Zhou, Nat. Catal. 2023, 6, 1073.
- 32C. Zhou, M. Hong, N. Hu, J. Yang, W. Zhu, L. Kong, M. Li, Adv. Funct. Mater. 2023, 33, 2213310.
- 33X. Liang, L. Shi, R. Cao, G. Wan, W. Yan, H. Chen, Y. Liu, X. Zou, Adv. Mater. 2020, 32, 2001430.
- 34I. S. Kwon, I. H. Kwak, J. Y. Kim, T. T. Debela, Y. C. Park, J. Park, H. S. Kang, ACS Nano 2021, 15, 5467.
- 35Q. Zhang, Y. Wang, Z. W. Seh, Z. Fu, R. Zhang, Y. Cui, Nano Lett. 2015, 15, 3780.
- 36H. Chen, G. Yu, G. D. Li, T. Xie, Y. Sun, J. Liu, H. Li, X. Huang, D. Wang, T. Asefa, W. Chen, X. Zou, Angew. Chem. Int. Ed. 2016, 55, 11442.
- 37C. Li, W. Ge, S. Qi, L. Zhu, R. Huang, M. Zhao, Y. Qian, L. Xu, Adv. Energy Mater. 2022, 12, 2103915.
- 38D. Yang, Z. Liang, C. Zhang, J. J. Biendicho, M. Botifoll, M. C. Spadaro, Q. Chen, M. Li, A. Ramon, A. O. Moghaddam, J. Llorca, J. Wang, J. R. Morante, J. Arbiol, S. L. Chou, A. Cabot, Adv. Energy Mater. 2021, 11, 2101250.
- 39L. Zhou, C. Yang, W. Zhu, R. Li, X. Pang, Y. Zhen, C. Wang, L. Gao, F. Fu, Z. Gao, Y. Liang, Adv. Energy Mater. 2022, 12, 2202367.
- 40J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao Horn, Science 2011, 334, 1383.
- 41D. Zhao, K. Sun, W. C. Cheong, L. Zheng, C. Zhang, S. Liu, X. Cao, K. Wu, Y. Pan, Z. Zhuang, B. Hu, D. Wang, Q. Peng, C. Chen, Y. Li, Angew. Chem. Int. Ed. 2020, 59, 8982.
- 42R. Li, H. Peng, Q. Wu, X. Zhou, J. He, H. Shen, M. Yang, C. Li, Angew. Chem. Int. Ed. 2020, 59, 12129.
- 43Z. Yang, Y. Dang, P. Zhai, Y. Wei, Q. Chen, J. Zuo, X. Gu, Y. Yao, X. Wang, F. Zhao, J. Wang, S. Yang, P. Tang, Y. Gong, Adv. Energy Mater. 2022, 12, 2103368.
- 44Y. Wang, C. Shi, J. Sha, L. Ma, E. Liu, N. Zhao, ACS Appl. Mater. Interfaces 2022, 14, 25337.
- 45D. Yang, M. Li, X. Zheng, X. Han, C. Zhang, J. Jacas Biendicho, J. Llorca, J. Wang, H. Hao, J. Li, G. Henkelman, J. Arbiol, J. R. Morante, D. Mitlin, S. Chou, A. Cabot, ACS Nano 2022, 16, 11102.
- 46C. Zhang, B. Fei, D. Yang, H. Zhan, J. Wang, J. Diao, J. Li, G. Henkelman, D. Cai, J. J. Biendicho, J. R. Morante, A. Cabot, Adv. Funct. Mater. 2022, 32, 2201322.
- 47S. E. Wang, M. J. Kim, J.-S. Park, J. W. Lee, D. W. Yoon, Y. Kim, J. H. Kim, Y. C. Kang, D. S. Jung, Chem. Eng. J. 2023, 465, 143035.
- 48J. Li, X. Niu, P. Zeng, M. Chen, Y. Pei, L. Li, Z. Luo, X. Wang, Chem. Eng. J. 2021, 421, 129770.
- 49L. Luo, X. Qin, J. Wu, G. Liang, Q. Li, M. Liu, F. Kang, G. Chen, B. Li, J. Mater. Chem. A 2018, 6, 8612.
- 50T. Feng, T. Zhao, S. Zhu, N. Zhang, Z. Wei, K. Wang, L. Li, F. Wu, R. Chen, Small Methods 2021, 5, 2100649.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.