In-Situ Constructed Core-Shell Catalyst Enabling Subzero Capacity Unlocking of Cost-Effective and Long-Life Vanadium Flow Batteries
Yizhe Nie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Conceptualization (equal), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorRui Nie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting)
Search for more papers by this authorHao Lin
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting), Methodology (equal)
Search for more papers by this authorJiajun Wu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Lihong Yu
School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055 China
Contribution: Conceptualization (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorProf. Dr. Le Liu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Methodology (lead)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jingyu Xi
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorYizhe Nie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Conceptualization (equal), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorRui Nie
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting)
Search for more papers by this authorHao Lin
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting), Methodology (equal)
Search for more papers by this authorJiajun Wu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Investigation (supporting)
Search for more papers by this authorDr. Lihong Yu
School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055 China
Contribution: Conceptualization (equal), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorProf. Dr. Le Liu
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Methodology (lead)
Search for more papers by this authorCorresponding Author
Prof. Dr. Jingyu Xi
Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055 China
Contribution: Conceptualization (lead), Supervision (lead), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Vanadium flow battery (VFB) promises a route for achieving grid-scale power storage by harnessing renewable energy sources. However, the sluggish reaction kinetics of vanadium redox couples and serious hydrogen evolution reaction (HER) still restrict the further development of VFB. Addressing these challenges requires not only effective solutions but also ones that are cost-efficient and scalable to meet the demands of affordable energy storage. Here, we present an in situ constructed Cu@Cu6Sn5 core-shell catalyst by incorporating metal ions into the electrolyte. The Cu core, encapsulated by the Cu6Sn5 shell, forms an excellent conductive pathway to the graphite felt electrode. Charge transfer between Cu and Sn within Cu6Sn5 shell accelerates the reaction kinetics of V2+/V3+ redox couple and selectively inhibits HER, as confirmed through in situ weak measurement imaging method. The Cu@Cu6Sn5 battery achieves a peak power density of 1119.1 mW cm−2 at 1350 mA cm−2, operates stably for 1200 cycles without catalyst failure, and is available over a wide-temperature range. Furthermore, we identify a demand of subzero capacity unlocking. Achieving a 23.4 % theoretical capacity unlocking at −10 °C with a cut-off voltage up to 1.75 V, bespeaking a crucial breakthrough toward cost-effective VFB.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420794-sup-0001-misc_information.pdf2.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wu, Y. Wang, D. Zhang, F. Xu, L. Dai, K. Qu, H. Cao, Y. Xia, S. Li, K. Huang, Z. Xu, Angew. Chem. Int. Ed. 2023, 62, e202313571.
- 2Z. Manzoor Bhat, M. Furquan, M. Aurang Zeb Gul Sial, U. Alam, A. Saeed Alzahrani, M. Qamar, J. Energy Chem. 2024, 95, 499–510.
- 3D. Zhang, K. Huang, Y. Xia, H. Cao, L. Dai, K. Qu, L. Xiao, Y. Fan, Z. Xu, Angew. Chem. Int. Ed. 2023, 62, e202310945.
- 4S. Wang, C. Yuan, N. Chang, Y. Song, H. Zhang, Y. Yin, X. Li, Sci. Bull. 2021, 66, 889–896.
- 5J. Wu, R. Nie, L. Yu, Y. Nie, Y. Zhao, L. Liu, J. Xi, Small 2024, 20, 2405643.
- 6J. Wei, J. Sun, P. Zhang, Y. Liu, T. Dai, L. Sun, Z. Tie, Z. Jin, Adv. Funct. Mater. 2024, 34, 2314956.
- 7L. Zhang, R. Feng, W. Wang, G. Yu, Nat. Chem. Rev. 2022, 6, 524–543.
- 8S. Huang, Z. Yuan, M. Salla, X. Wang, H. Zhang, S. Huang, D. G. Lek, X. Li, Q. Wang, Energy Environ. Sci. 2023, 16, 438–445.
- 9X. Zhang, L. Liu, K. Zhang, D. Zhang, S. Hou, J. Zhao, H. He, X. Wu, J. Liu, C. Yan, Energy Storage Mater. 2024, 69, 103442.
- 10F. Zhu, W. Guo, Y. Fu, Chem. Soc. Rev. 2023, 52, 8410–8446.
- 11M. Park, Y. J. Jung, J. Kim, H. Lee, J. Cho, Nano Lett. 2013, 13, 4833–4839.
- 12L. Yu, F. Lin, W. Xiao, L. Xu, J. Xi, Chem. Eng. J. 2019, 356, 622–631.
- 13B. Sun, M. Skyllas-Kazakos, Electrochim. Acta 1991, 36, 513–517.
- 14Y. Jiang, Z. Liu, Y. Ren, A. Tang, L. Dai, L. Wang, S. Liu, Y. Liu, Z. He, J. Mater. Sci. Technol. 2024, 186, 199–206.
- 15R. Huang, S. Liu, Z. He, G. Ye, W. Zhu, H. Xu, J. Wang, ACS Nano 2023, 17, 19098–19108.
- 16L. Wei, T. S. Zhao, L. Zeng, X. L. Zhou, Y. K. Zeng, Appl. Energy 2016, 180, 386–391.
- 17X. Zhang, A. Valencia, W. Li, K. Ao, J. Shi, X. Yue, R. Zhang, W. A. Daoud, Adv. Mater. 2024, 36, 2305415.
- 18D. Xi, A. M. Alfaraidi, J. Gao, T. Cochard, L. C. I. Faria, Z. Yang, T. Y. George, T. Wang, R. G. Gordon, R. Y. Liu, M. J. Aziz, Nat. Energy 2024, 9, 479–490.
- 19W. Xu, J. Long, J. Liu, H. Luo, H. Duan, Y. Zhang, J. Li, X. Qi, L. Chu, Chem. Eng. J. 2022, 428, 131203.
- 20A. Angulo, P. van der Linde, H. Gardeniers, M. Modestino, D. Fernández Rivas, Joule 2020, 4, 555–579.
- 21K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, J. Energy Storage 2019, 25, 100844.
- 22L. Wu, J. Wang, Y. Shen, L. Liu, J. Xi, Phys. Chem. Chem. Phys. 2017, 19, 14708–14717.
- 23H. Chen, X. Zhang, S. Zhang, S. Wu, F. Chen, J. Xu, Chem. Eng. J. 2022, 429, 132403.
- 24Y. Wen, T. P. Neville, A. Jorge Sobrido, P. R. Shearing, D. J. L. Brett, R. Jervis, J. Power Sources 2023, 566, 232861.
- 25X. Li, X. Wang, L. Ma, W. Huang, Adv. Energy Mater. 2022, 12, 2202068.
- 26S. Mehboob, A. Mehmood, J.-Y. Lee, H.-J. Shin, J. Hwang, S. Abbas, H. Y. Ha, J. Mater. Chem. A 2017, 5, 17388–17400.
- 27H. Zhang, D. Xu, F. Yang, J. Xie, Q. Liu, D.-J. Liu, M. Zhang, X. Lu, Y. S. Meng, Joule 2023, 7, 971–985.
- 28Y. Liu, F. Liang, Y. Zhao, L. Yu, L. Liu, J. Xi, J. Energy Chem. 2018, 27, 1333–1340.
- 29Q. Zhang, H. Yan, Y. Song, J. Yang, Y. Song, A. Tang, J. Mater. Chem. A 2023, 11, 8700–8709.
- 30X. Zhou, X. Zhang, L. Mo, X. Zhou, Q. Wu, Small 2020, 16, 1907333.
- 31X. Liu, Y. Nie, L. Yu, L. Liu, J. Xi, J. Energy Storage 2024, 91, 112035.
- 32F. Xing, Q. Fu, F. Xing, J. Zhao, H. Long, T. Liu, X. Li, J. Am. Chem. Soc. 2024, 146, 26024–26033.
- 33H. Lin, Y. Xu, X. Chen, Z. Fang, T. Yan, K. Ma, L. Liu, J. Xi, Small Methods 2024, 8, 2300841.
- 34Y. Nie, J. Wu, H. Chen, L. Yu, L. Liu, J. Xi, ACS Materials Lett. 2024, 6, 4028–4035.
- 35R. Zhao, Q. Yan, L. Yu, T. Yan, X. Zhu, Z. Zhao, L. Liu, J. Xi, Adv. Mater. 2023, 35, 2306633.
- 36J. C. Slater, J. Chem. Phys. 1964, 41, 3199–3204.
- 37Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater. 2016, 2, 1600019.
- 38X. Jiang, X. Wang, Z. Liu, Q. Wang, X. Xiao, H. Pan, M. Li, J. Wang, Y. Shao, Z. Peng, Y. Shen, M. Wang, Appl. Catal. B 2019, 259, 118040.
- 39A. He, D. G. Ivey, J. Materials Sci. 2015, 50, 2944–2959.
- 40J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, L. C. Allen, J. Am. Chem. Soc. 2000, 122, 5132–5137.
- 41D. Cheng, Y. Li, J. Zhang, M. Tian, B. Wang, Z. He, L. Dai, L. Wang, Carbon 2020, 170, 527–542.
- 42Z. Cai, Y. Wu, Z. Wu, L. Yin, Z. Weng, Y. Zhong, W. Xu, X. Sun, H. Wang, ACS Energy Lett. 2018, 3, 2816–2822.
- 43Y. Nie, H. Chen, J. Wu, R. Nie, L. Yu, L. Liu, J. Xi, Chem. Eng. J. 2024, 498, 155615.
- 44K. Ma, Y. Zhang, L. Liu, J. Xi, X. Qiu, T. Guan, Y. He, Nat. Commun. 2019, 10, 5286.
- 45Y. Liu, Y. Shen, L. Yu, L. Liu, F. Liang, X. Qiu, J. Xi, Nano Energy 2018, 43, 55–62.
- 46L. Wu, Y. Shen, L. Yu, J. Xi, X. Qiu, Nano Energy 2016, 28, 19–28.
- 47Y. Liu, L. Yu, L. Liu, J. Xi, Appl. Energy 2021, 301, 117454.
- 48M. Gao, Z. Wang, D. G. Lek, Q. Wang, Nano Res. Energy 2023, 2, e9120045.
- 49R. Huang, S. Liu, Z. He, W. Zhu, G. Ye, Y. Su, W. Deng, J. Wang, Adv. Funct. Mater. 2022, 32, 2111661.
- 50F. Xing, T. Liu, Y. Yin, R. Bi, Q. Zhang, L. Yin, X. Li, Adv. Funct. Mater. 2022, 32, 2111267.
- 51C. T.-C. Wan, R. R. Jacquemond, Y.-M. Chiang, K. Nijmeijer, F. R. Brushett, A. Forner-Cuenca, Adv. Mater. 2021, 33, 2006716.
- 52Y. Liu, L. Yu, X. Liu, L. Liu, J. Xi, J. Energy Chem. 2022, 72, 545–553.
- 53Y. Zhao, L. Yu, X. Qiu, J. Xi, J. Power Sources 2018, 402, 453–459.
- 54Q. Deng, X. Y. HuangYang, X. Zhang, Z. H. Xiao, W. B. Zhou, H. R. Wang, H. Y. Liu, F. Zhang, C. Z. Li, X. W. Wu, Y. G. Guo, Adv. Energy Mater. 2022, 12, 2103186.
- 55R. Wang, M. Hao, C. He, Z. Tu, F. Chong, Y. Li, Appl. Catal. B 2023, 332, 122773.
- 56M. Jiao, T. Liu, C. Chen, M. Yue, G. Pastel, Y. Yao, H. Xie, W. Gan, A. Gong, X. Li, L. Hu, Energy Storage Mater. 2020, 27, 327–332.
- 57K. Zhang, C. Yan, A. Tang, Energy Storage Mater. 2021, 34, 301–310.
- 58S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, J. Xi, Electrochim. Acta 2016, 187, 525–534.
- 59J. Xi, S. Xiao, L. Yu, L. Wu, L. Liu, X. Qiu, Electrochim. Acta 2016, 191, 695–704.
- 60B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, J. Membr. Sci. 2016, 510, 18–26.
- 61B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, X. Qiu, ACS Appl. Mater. Interfaces 2016, 8, 12228–12238.
- 62Y. Zhao, L. Liu, X. Qiu, J. Xi, Electrochim. Acta 2019, 303, 21–31.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.