Visible-Light Photocatalyzed Skeletal Rearrangement Enables the Synthesis of Highly Functionalized Xanthenes with Antitumor Activity
Shi-Lin Lin
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorFen Zhao
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorFen Wei
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorYing-Tong Shi
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorJing-Kai Wen
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorChao Yang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorHao-Shuo Zhang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorChuang-Chuang Li
Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Chang Liu
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Wen-Cai Ye
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Min-Jing Cheng
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Lei Wang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorShi-Lin Lin
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorFen Zhao
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorFen Wei
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
These authors contributed equally.
Search for more papers by this authorYing-Tong Shi
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorJing-Kai Wen
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorChao Yang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorHao-Shuo Zhang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorChuang-Chuang Li
Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055 P. R. China
Search for more papers by this authorCorresponding Author
Chang Liu
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Wen-Cai Ye
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Min-Jing Cheng
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorCorresponding Author
Lei Wang
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou, 510632 P. R. China “.
Center for Bioactive Natural Molecules and Innovative Drugs, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632 P. R. China
Guangdong-Hong Kong-Macau Join Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, 510632 P. R. China
Search for more papers by this authorAbstract
Highly functionalized xanthenes possess an impressive range of bioactivities and daunting synthetic challenge due to their unique ring systems and stereocenters. Here, we report an unprecedented ketyl radicals-induced skeletal rearrangement reaction of spirodihydrobenzofurans, enabled by zero-valent iron as reducing agents via photoredox catalysis, facilitating the facile preparation of various highly functionalized xanthenes. The features of this protocol include high chemo- and regioselectivity, exceptionally mild conditions, a broad substrate scope, scalability to gram-scale quantities, and consistent delivery of good to excellent yields. Mechanistic studies rationalize the function of this zero-valent iron-based reactivity in radical generation. Notably, this reaction was applied to the first asymmetric total synthesis of the complex polycyclic xanthene ent-myrtucomvalones E−F. Moreover, this work led to the discovery of an agent with highly effective antiosteosarcoma activity in vitro and in vivo, potentially paving the way for the development of new xanthene-based candidates for osteosarcoma treatment.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the Supporting Information of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420671-sup-0001-misc_information.pdf23 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aD. Leys, Br. Med. J. 1956, 1, 549;
- 1bZ. Mao, H. Rha, J. Kim, X. You, F. Zhang, W. Tao, J. S. Kim, Adv. Sci. 2023, 10, 2301177;
- 1cC. Cruche, W. Neiderer, S. K. Collins, ACS Catal. 2021, 11, 8829–8836;
- 1dM. Isaka, S. Palasarn, P. Auncharoen, S. Komwijit, E. B. G. Jones, Tetrahedron Lett. 2009, 50, 284–287;
- 1eC. Meléndez-González, M. J. Murià-González, A. L. Anaya, B. E. Hernández-Bautista, S. Hernández-Ortegac, M. C. Gonzálezd, A. E. Glenne, R. T. Hanlinf, M. L. Macas-Rubalcava, Chem. Biodiversity 2015, 12, 133–147;
- 1fY. Wu, M. Chen, W.-J. Wang, N.-P. Li, W.-C. Ye, L. Wang, Chem. Biodiversity 2020, 17, e2000292.
- 2For some representative reviews, see:
- 2aM. M. M. Pinto, M. E. Sousa, M. S. J. Nascimento, Curr. Med. Chem. 2005, 12, 2517–2538;
- 2bZ. Feng, X. Lu, L. Gan, Q. Zhang, L. Lin, Molecules 2020, 25, 598;
- 2cM. Maia, D. I. S. P. Resende, F. Duraes, M. M. M. Pinto, E. Sousa, Eur. J. Med. Chem. 2021, 210, 113085;
- 2dT. Elsaman, M. S. Mohamed, E. M. Eltayib, A. E. Abdalla, M. A. Mohamed, Med. Chem. 2021, 17, 310–331.
- 3For some representative reviews, see:
- 3aK. S. Masters, S. Bräse, Chem. Rev. 2012, 112, 3717–3776;
- 3bD. K. Winter, D. L. Sloman, J. A. Porco Jr, Nat. Prod. Rep. 2013, 30, 382–391;
- 3cA. Chaudhary, J. M. Khurana, Curr. Org. Synth. 2018, 15, 341–369;
- 3dS. Ramakrishnan, S. Paramewaran, N. M. Nasir, Chem. Pap. 2021, 75, 455–470.
- 4For some representative examples, see:
- 4aE. Yoshioka, S. Kohtani, H. Miyabe, Angew. Chem. Int. Ed. 2011, 50, 6638–6642;
- 4bM. Li, B. Zhang, Y. Gu, Green Chem. 2012, 14, 2421–2428;
- 4cO. El-Sepelgy, S. Haseloff, S. K. Alamsetti, C. Schneider, Angew. Chem. Int. Ed. 2014, 53, 7923–7927;
- 4dC. C. Hsiao, H. H. Liao, M. Rueping, Angew. Chem. Int. Ed. 2014, 53, 13258–13263;
- 4eG. Liu, C. Wu, B. Chen, R. He, C. Chen, Chin. Chem. Lett. 2018, 29, 985–988;
- 4fN. Pannilawithana, B. Pudasaini, M. H. Baik, C. S. Yi, J. Am. Chem. Soc. 2021, 143, 13428–13440;
- 4gX. Q. Zhu, Q. Wang, J. Zhu, Angew. Chem. Int. Ed. 2023, 135, e202214925;
- 4hB. Borah, S. Swain, M. Patat, B. Kumar, K. K. Prajapat, R. Biswas, R. Vasantha, L. R. Chowhan, Sci. Rep. 2023, 13, 1386.
- 5For some representative examples, see:
- 5aH. Müller, M. Paul, D. Hartmann, V. Huch, D. Blaesius, A. Koeberle, O. Werz, J. Jauch, Angew. Chem. Int. Ed. 2010, 49, 2045–2049;
- 5bJ. R. Butler, C. Wang, J. Bian, J. M. Ready, J. Am. Chem. Soc. 2011, 133, 9956–9959;
- 5cD. L. Sloman, J. W. Bacon, J. A. Porco Jr, J. Am. Chem. Soc. 2011, 133, 9952–9955;
- 5dA. Axelrod, A. M. Eliasen, M. R. Chin, K. Zlotkowski, D. Siegel, Angew. Chem. Int. Ed. 2013, 52, 3421–3424;
- 5eT. Qin, S. L. Skraba-Joiner, Z. G. Khalil, R. P. Johnson, R. J. Capon, J. A. Porco Jr, Nat. Chem. 2015, 7, 234–240;
- 5fJ. Rujirawanich, S. Kim, A. J. Ma, Butler, R. John, Y. Wang, C. Wang, M. Rosen, B. Posner, D. Nijhawan, M. J. Ready, J. Am. Chem. Soc. 2016, 138, 10561–10570;
- 5gS. D. Holmbo, S. V. Pronin, J. Am. Chem. Soc. 2018, 140, 5065–5068;
- 5hY. Dai, F. Ma, Y. Shen, T. Xie, S. Gao, Org. Lett. 2018, 20, 2872–2875;
- 5iX. Luo, L. Qian, Y. Xiao, Y. Tang, Y. Zhao, X. Wang, L. Gu, Z. Lei, J. Bao, J. Wu, T. He, F. Hu, J. Zeng, H. Li, W. Zhu, L. Shao, X. Dong, D. Chen, X. Qian, Y. Yang, Nat. Commun. 2019, 10, 258;
- 5jT. Xie, C. Zheng, K. Chen, H. B. He, S. H. Gao, Angew. Chem. Int. Ed. 2020, 132, 4390–4394;
- 5kK. Ji, R. P. Johnson, J. McNeely, M. A. Faruk, J. A. Porco Jr, J. Am. Chem. Soc. 2024, 146, 4892–4902.
- 6A. Gervais, Studies toward the total synthesis of tetramethyldihydroxanthene natural products. Boston University, 2014, 57–60.
- 7M.-J. Cheng, Y.-Y. Wu, H. Zeng, T.-H. Zhang, Y.-X. Hu, S.-Y. Liu, R.-Q. Cui, C.-X. Hu, Q.-M. Zou, C.-C. Li, W.-C. Ye, W. Huang, L. Wang, Nat. Commun. 2024, 15, 5879.
- 8For some representative examples, see:
- 8aA. Shiotari, T. Nakae, K. Iwata, S. Mori, T. Okujima, H. Uno, H. Sakaguchi, Y. Sugimoto, Nat. Commun. 2017, 8, 16089;
- 8bN. Pavliček, P. Gawel, D. R. Kohn, Z. Majzik, Y. Xiong, G. Meyer, H. L. Anderson, L. Gross, Nat. Chem. 2018, 10, 853–858;
- 8cB. Hong, W. Liu, J. Wang, J. Wu, Y. Kadonaga, P.-J. Cai, H.-X. Lou, Z.-X. Yu, H. Li, X. Lei, Chem 2019, 5, 1671–1681;
- 8dX. Y. Qin, F. T. Meng, M. Wang, S.-J. Tu, W.-J. Hao, J. Wang, B. Jiang, ACS Catal. 2021, 11, 6951–6959;
- 8eY. Wang, H. Tian, J. Gui, J. Am. Chem. Soc. 2021, 143, 19576–19586;
- 8fJ. Huang, T. Cao, Z. Zhang, Z. Yang, J. Am. Chem. Soc. 2022, 144, 2479–2483;
- 8gY. Ano, D. Takahashi, Y. Yamada, N. Chatani, ACS Catal. 2023, 13, 2234–2239;
- 8hD. Sun, R. Chen, D. Tang, Q. Xia, Y. Zhao, C.-H. Liu, H. Ding, J. Am. Chem. Soc. 2023, 145, 11927–11932.
- 9W. D. Shipe, E. J. Sorensen, J. Am. Chem. Soc. 2006, 128, 7025–7035.
- 10For some representative reviews, see:
- 10aB. E. Kahn, R. D. Rieke, Chem. Rev. 1988, 88, 733–745;
- 10bJ. Streuff, Synthesis 2013, 45, 281–307;
- 10cM. Szostak, N. J. Fazakerley, D. Parmar, D. J. Procter, Chem. Rev. 2014, 114, 5959–6039;
- 10dY. Gao, D. Ma, Nat. Synth. 2022, 1, 275–288.
- 11H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
- 12For some representative examples, see:
- 12aM. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 8828–8832;
- 12bK. N. Lee, Z. Lei, M. Y. Ngai, J. Am. Chem. Soc. 2017, 139, 5003–5006;
- 12cA. Caron, É. Morin, S. K. Collins, ACS Catal. 2019, 9, 9458–9464;
- 12dZ.-S. Wang, Y.-B. Chen, H. W. Zhang, Z. Sun, C. Zhu, L.-W. Ye, J. Am. Chem. Soc. 2020, 142, 3636–3644;
- 12eJ.-L. Zhang, W.-B. He, X.-Q. Hu, P.-F. Xu, Sci. China Chem. 2024, 67, 945–952;
- 12fS. Li, H.-W. Du, P. W. Davies, W. Shu, CCS Chem. 2024, 6, 1060–1070.
- 13X. Kong, J. Niu, W. Zhang, J. Liu, J. Yuan, H. Li, X. Yue, Sci. Total Environ. 2021, 791, 148415.
- 14For some representative reviews, see:
- 14aH. H. Abd, S. Mutazah, M. M. Yusoff, Asian J. Pharm. Clin. Res. 2017, 10, 10–16;
- 14bR. Nicoletti, M. M. Salvatore, P. Ferranti, A. Andolfi, Molecules 2018, 23, 3370;
- 14cE. M. Abdelmalek, M. A. Ramadan, F. M. Darwish, M. H. Assaf, N. M. Mohamed, S. A. Ross, Med. Chem. Res. 2021, 30, 1031–1055; For some representative examples, see:
- 14dF. Shaheen, M. Ahmad, N. S. Khan, S. S. Hussain, S. Anjum, B. Tashkhodjaev, K. Turguniv, M. N. Sultankhodzhaev, M. I. Choudhary, A.-U. Rahman, Eur. J. Org. Chem. 2006, 2006, 2371;
- 14eA. Hiranrat, W. Mahabusarakam, Tetrahedron 2008, 64, 11193–11197;
- 14fA. R. Carroll, J. Lamb, R. Moni, G. P. Guymer, P. I. Forster, R. J. Quinn, J. Nat. Prod. 2008, 71, 1564–1568;
- 14gS. Rattanaburi, W. Mahabusarakam, S. Phongpaichit, A. R. Carroll, Tetrahedron 2013, 69, 6070–6075;
- 14hN. Tanaka, Y. Jia, K. Niwa, K. Imabayashi, Y. Tatano, H. Yagi, Y. Kashiwada, Tetrahedron 2018, 74, 117–123;
- 14iX.-J. Qin, H. Liu, P.-P. Li, W. Ni, L. He, A. Khan, X.-J. Hao, H.-Y. Liu, Bioorg. Chem. 2021, 107, 104519;
- 14jQ.-H. Mo, M.-Q. Yan, X.-L. Zhou, Q. Luo, X. S. Huang, C.-Q. Liang, Phytochemistry 2021, 190, 112890.
- 15T. Shibata, A. Kabumoto, T. Shiragami, O. Ishitani, C. Pac, S. Yanagida, J. Phys. Chem. 1990, 94, 2068–2076.
- 16M. Nakajima, E. Fava, S. Loescher, Z. Jiang, M. Rueping, Angew. Chem. Int. Ed. 2015, 54, 8828–8832.
- 17F. Li, D. Tian, Y. Fan, R. Lee, G. Lu, Y. Yin, B. Qiao, X. Zhao, Z. Xiao, Z. Jiang, Nat. Commun. 2019, 10, 1774.
- 18C. Villiers, M. Ephritikhine, Chem. Eur. J. 2001, 7, 3043–3051.
10.1002/1521-3765(20010716)7:14<3043::AID-CHEM3043>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar
- 19For some representative examples, see:
- 19aM.-J. Cheng, J.-Q. Cao, X.-Y. Yang, L.-P. Zhong, L.-J. Hu, X. Lu, B.-L. Hou, Y.-J. Hu, Y. Wang, X.-F. You, L. Wang, W.-C. Ye, C.-C. Li, Chem. Sci. 2018, 9, 1488–1495;
- 19bM.-J. Cheng, X.-Y. Yang, J.-Q. Cao, C. Liu, L.-P. Zhong, Y. Wang, X.-F. You, C.-C. Li, L. Wang, W.-C. Ye, Org. Lett. 2019, 21, 1583–1587;
- 19cM.-J. Cheng, L.-P. Zhong, C.-C. Gu, X.-J. Zhu, B. Chen, J.-S. Liu, L. Wang, W.-C. Ye, C.-C. Li, J. Am. Chem. Soc. 2020, 142, 12602–12607;
- 19dJ. Wang, J. G. Song, D. L. Zhong, Z.-Z. Duan, Z.-J. Peng, W. Tang, Q.-Y. Song, X.-J. Huang, L.-J. Hu, Y. Wang, W.-C. Ye, Angew. Chem. Int. Ed. 2023, 62, e202312568.
- 20Z. Li, L. Huan, J. Li, X. Shu, D. Zhong, W. Zhang, H. Huo, Angew. Chem. Int. Ed. 2023, 135, e202305889.
- 21Deposition Numbers 2385202 (for 7), 2378901 (for 9 za), 2378907 (for 9 zb), 2378913 (for 17), 2378925 (for 18), 2379453 (for 19), 2378924 (for 20), 2388357 (for 25), 2378908 (for 28) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 22Y. Zhang, H. Yang, F.-T. Wang, X. Peng, H.-Y. Liu, Q.-J. Li, L.-K. An, Eur. J. Med. Chem. 2022, 238, 114445.
- 23For some representative examples, see:
- 23aZ. Liang, Q. Wen, X. Wang, F. Zhang, Y. Yu, Appl. Surf. Sci. 2016, 386, 451–459;
- 23bC. Xia, J. Liu, J. Nanopart. Res. 2020, 22, 188;
- 23cY. N. Kanafin, P. Abdirova, D. Kanafina, E. Arkhangelsky, G. Z. Kyzas, S. G. Poulopoulos, Catalysts 2023, 13, 25.
- 24D. Davidson, L. A. Welo, J. Phys. Chem. 2002, 32, 1191–1196.
10.1021/j150290a007 Google Scholar
- 25J. F. Below Jr, R. E. Connick, C. P. Coppel, J. Am. Chem. Soc. 1958, 80, 2961–2967.
- 26Z. Shen, M. M. Walker, S. Chen, G. A. Parada, D. M. Chu, S. Dongbang, J. M. Mayer, K. N. Houk, J. A. Ellman, J. Am. Chem. Soc. 2021, 143, 126–131.
- 27X. Gu, J. Shen, Z. Xu, J. Liu, M. Shi, Y. Wei, Angew. Chem. Int. Ed. 2024, 63, e202409463.
- 28L. Mirabello, R. J. Troisi, S. A. Savage, Int. J. Cancer 2009, 125, 229e34.
- 29K.-P. Zhu, C.-L. Zhang, X.-L. Ma, J.-P. Hu, T. Cai, L. Zhang, Mol. Ther. 2019, 27, 518e30.
- 30For some representative reviews, see:
- 30aA. Manikandan, A. Sivakumar, P. S. Nigam, A. A. Napoleon, Anti-cancer Agent. Me. 2020, 20, 909–916;
- 30bM. Abualhasan, M. Hawash, S. Aqel, M. Al-Masri, A. Mousa, L. Issa, ACS Omega 2023, 8, 38597–38606;
- 30cU. Gogoi, K. Pathak, R. Saikia, M. P. Pathak, T. Paul, S. A. Khan, A. Das, Med. Chem. 2023, 19, 757–784.
- 31D. Liao, L. Zhong, J. Yin, C. Zeng, X. Wang, X. Huang, J. Chen, H. Zhang, R. Zhang, X.-Y. Guan, X. Shuai, J. Sui, S. Gao, W. Deng, Y.-X. Zeng, J.-N. Shen, J. Chen, T. Kang, Nat. Cell Biol. 2020, 22, 868–881.
- 32For some representative examples, see:
- 32aS. Kawamura, H. Chu, J. Felding, P. S. Baran, Nature 2016, 532, 90–93;
- 32bD. Chen, P. A. Evans, J. Am. Chem. Soc. 2017, 139, 6046–6049;
- 32cJ. Tang, W. Li, T.-Y. Chiu, F. Martínez-Peña, Z. Luo, C. T. Chong, Q. Wei, N. Gazaniga, T. J. West, Y. Yang, L. L. Lairson, C. G. Parker, P. S. Baran, Nature 2023, 622, 507–513.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.