Strained Dehydro-[2,2]-paracyclophane Enabled Planar Chirality Construction and [2.2]Paracyclophane Functionalization
Xue Zhang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorYi Zhou
College of Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Zhi-Xiang Yu
College of Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenghu Xu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorXue Zhang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorYi Zhou
College of Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorCorresponding Author
Zhi-Xiang Yu
College of Chemistry, Peking University, Beijing, 100871 China
Search for more papers by this authorProf. Dr. Chen-Ho Tung
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
Search for more papers by this authorCorresponding Author
Prof. Dr. Zhenghu Xu
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032 China
Search for more papers by this authorAbstract
Planar chirality found tremendous use in many fields, such as chemistry, optics, and materials science. In particular, planar chiral [2.2]paracyclophanes (PCPs) are a type of structurally interesting and practically useful chiral compounds bearing unique electronic and photophysical properties and thus have been widely used in π-stacking polymers, organic luminescent materials, and as a valuable toolbox for developing chiral ligands or organocatalysts. However, the synthesis of chiral PCP derivatives remains a longstanding challenge. Current synthetic methods primarily rely on chiral preparative liquid chromatography separation or chemical and kinetic resolution reactions. Here, we report an enantioconvergent alkynylation of an in situ-formed dehydro-[2,2]-paracyclophane intermediate by asymmetric copper(I) catalysis. This approach enables the efficient synthesis of valuable planar chiral PCP building blocks and heterocycles with good yields and excellent enantioselectivity. The success of this reaction lies in the development of a practical route to access strained dehydro-[2,2]-paracyclophane intermediates, which can also be utilized in various strain-release nucleophilic or cycloaddition reactions to synthesize diverse functionalized PCPs. DFT calculations of this reaction suggest that the enantioselectivity is determined by the aryne complexation with chiral copper(I) acetylide and the subsequent insertion reaction.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420667-sup-0001-misc_information.pdf13.3 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aO. Oki, H. Yamagishi, Y. Morisaki, R. Inoue, K. Ogawa, N. Miki, Y. Norikane, H. Sato, Y. Yamamoto, Science 2022, 377, 673–678;
- 1bZ. Lian, J. He, L. Liu, Y. Fan, X. Chen, H. Jiang, Nat. Commun. 2023, 14, 2752.
- 2For selected reviews:
- 2aE. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett, Nat. Rev. Drug Discovery 2008, 7, 608–624;
- 2bS. R. LaPlante, L. D. Fader, K. R. Fandrick, D. R. Fandrick, O. Hucke, R. Kemper, S. P. F. Miller, P. J. Edwards, J. Med. Chem. 2011, 54, 7005–7022;
- 2cM. Basilaia, M. H. Chen, J. Secka, J. L. Gustafson, Acc. Chem. Res. 2022, 55, 2904–2919.
- 3
- 3aS. Felder, M.-L. Delcourt, D. Contant, R. Rodríguez, L. Favereau, J. Crassous, L. Micouin, E. Benedetti, J. Mater. Chem. C. 2023, 11, 2053–2062;
- 3bD. Han, X. Yang, J. Han, J. Zhou, T. Jiao, P. Duan, Nat. Commun. 2020, 11, 5659;
- 3cX. Liao, D. Pu, L. Yuan, J. Tong, S. Xing, Z. Tu, J.-L. Zuo, W.-H. Zheng, Y.-X. Zheng, Angew. Chem. Int. Ed. 2023, 62, e202217045;
- 3dM. Gong, L. Yuan, Y.-X. Zheng, W.-H. Zheng, Adv. Funct. Mater. 2024, DOI: 10.1002/adfm.202314205.
- 4M. Cakici, Z.-G. Gu, M. Nieger, J. Bürck, L. Heinke, S. Bräse, Chem. Commun. 2015, 51, 4796–4798.
- 5
- 5aY. Morisaki, Y. Chujo, Angew. Chem. Int. Ed. 2006, 45, 6430–6437;
- 5bK. C. K. Cheng, M. A. Bedolla-Pantoja, Y.-K. Kim, J. V. Gregory, F. Xie, A. de France, C. Hussal, K. Sun, N. L. Abbott, J. Lahann, Science 2018, 362, 804–808.
- 6
- 6aS. V. Kumar, P. J. Guiry, Angew. Chem. Int. Ed. 2022, 61, e202205516;
- 6bH. Liang, W. Guo, J. Li, J. Jiang, J. Wang, Angew. Chem. Int. Ed. 2022, 61, e202204926;
- 6cY.-Q. Bai, X.-W. Wang, B. Wu, X.-Q. Wang, R.-Z. Liao, M. Li, Y.-G. Zhou, ACS Catal. 2023, 13, 9829–9838;
- 6dA. Togni, C. Breutel, A. Schnyder, F. Spindler, H. Landert, A. Tijani, J. Am. Chem. Soc. 1994, 116, 4062–4066;
- 6eS. Yuan, C. Liao, W.-H. Zheng, Org. Lett. 2021, 23, 4142–4146.
- 7
- 7aC. Gagnon, É. Godin, C. Minozzi, J. Sosoe, C. Pochet, S. K. Collins, Science 2020, 367, 917–921;
- 7bZ. Dong, J. Li, T. Yao, C. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202315603;
- 7cJ. Li, Z. Dong, Y. Chen, Z. Yang, X. Yan, M. Wang, C. Li, C. Zhao, Nat. Commun. 2024, DOI: 10.1038/s41467-024-46376-8;
- 7dX. Lv, F. Su, H. Long, F. Lu, Y. Zeng, M. Liao, F. Che, X. Wu, Y. R. Chi, Nat. Commun. 2024, 15, 958;
- 7eG. Yang, Y. He, T. Wang, Z. Li, J. Wang, Angew. Chem. Int. Ed. 2024, 63, e202316739;
- 7fG. Yang, J. Wang, Angew. Chem. Int. Ed. 2024, No. e202412805.
- 8
- 8aC.-X. Liu, Q. Gu, S.-L. You, Trends Chem. 2020, 2, 737–749;
- 8bL. Zhou, H.-G. Cheng, L. Li, K. Wu, J. Hou, C. Jiao, S. Deng, Z. Liu, J.-Q. Yu, Q. Zhou, Nat. Chem. 2023, 15, 815–823.
- 9D. J. Cram, J. M. Cram, Acc. Chem. Res. 1971, 4, 204–213.
- 10Z. Hassan, E. Spuling, D. M. Knoll, J. Lahann, S. Bräse, Chem. Soc. Rev. 2018, 47, 6947–6963.
- 11
- 11aC. J. Brown, A. C. Farthing, Nature 1949, 164, 915–916;
- 11bR. López, C. Palomo, Angew. Chem. Int. Ed. 2022, 61, e202113504.
- 12
- 12aA. Cipiciani, F. Fringuelli, V. Mancini, O. Piermatti, F. Pizzo, J. Org. Chem. 1997, 62, 3744–3747;
- 12bV. Rozenberg, N. Dubrovina, E. Sergeeva, D. Antonov, Y. Belokon, Tetrahedron: Asymmetry 1998, 9, 653–656;
- 12cV. Rozenberg, T. Danilova, E. Ser-geeva, E. Vorontsov, Z. Starikova, A. Korlyukov, H. Hopf, Eur. J. Org. Chem. 2002, 468–477;
- 12dR. Parmar, M. P. Coles, P. B. Hitchcock, G. J. Rowlands, Synthesis 2010, 24, 4177–4187.
- 13
- 13aP. Dorizon, C. Martin, J.-C. Daran, J.-C. Fiaud, H. B. Kagan, Tetrahedron: Asymmetry 2001, 12, 2625–2630;
- 13bM. C. Kreis, J. Friedmann, S. Bräse, Chem. Eur. J. 2005, 11, 7387–7394;
- 13cM.-L. Delcourt, S. Turcaud, E. Benedetti, L. Micouin, Adv. Synth. Catal. 2016, 358, 1213–1218;
- 13dY. Zhao, H. Wang, B. Wu, Y.-G. Zhou, Org. Chem. Front. 2019, 6, 3956–3960;
- 13eQ. Liu, K. Teng, Y. Zhang, Y. Lv, Y. R. Chi, Z. Jin, Angew. Chem. Int. Ed. 2024, DOI: 10.1002/anie.202406386;
- 13fS. Yu, H. Bao, D. Zhang, X. Yang, Nat. Commun. 2023, 14, 5239.
- 14
- 14aM.-L. Delcourt, S. Felder, E. Benedetti, L. Micouin, ACS Catal. 2018, 8, 6612–6616;
- 14bV. Dočekal, F. Koucký, I. Císařová, J. Veselý, Nat. Commun. 2024, 15, 3090.
- 15
- 15aD. Ly, J. Bacsa, H. M. L. Davies, ACS Catal. 2024, 14, 6423–6431;
- 15bD. Chen, Y. Zhou, C.-H. Tung, Z. Yu, Z. Xu, CCS Chem. 2024, DOI: 10.31635/ccschem.024.202404067.
- 16J. D. Roberts Jr., H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, J. Am. Chem. Soc. 1956, 75, 3290–3291.
- 17
- 17aG. Wittig, L. Pohmer, Chem. Ber. 1956, 89, 1334–1351;
- 17bT. Wang, R. R. Naredla, S. K. Thompson, T. R. Hoye, Nature 2016, 532, 484–488;
- 17cQ. Xu, T. R. Hoye, J. Am. Chem. Soc. 2024, 146, 6438–6443;
- 17dJ. He, D. Qiu, Y. Li, Acc. Chem. Res. 2020, 53, 508–519;
- 17eJ. Shi, L. Li, Y. Li, Chem. Rev. 2021, 121, 3892–4044;
- 17fA. Ngamnithiporn, E. R. Welin, G. Pototschnig, B. M. Stoltz, Acc. Chem. Res. 2024, 57, 1870–1884;
- 17gJ. M. Medina, J. L. Mackey, N. K. Garg, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 15798–15805;
- 17hH. H. Wenk, M. Winkler, W. Sander, Angew. Chem. Int. Ed. 2003, 42, 502–528;
- 17iC. M. Gampe, E. M. Carreira, Angew. Chem. Int. Ed. 2012, 51, 3766–3778;
- 17jH. Takikawa, A. Nishii, T. Sakai, K. Suzuki, Chem. Soc. Rev. 2018, 47, 8030–8056;
- 17kL. L. Fluegel, T. R. Hoye, Chem. Rev. 2021, 121, 2413–2444;
- 17lF. M. Ippoliti, N. J. Adamson, L. G. Wonilowicz, D. J. Nasrallah, E. R. Darzi, J. S. Donaldson, N. K. Garg, Science 2023, 379, 261–265.
- 18J. C. Jewett, C. R. Bertozzi, Chem. Soc. Rev. 2010, 39, 1272–1279.
- 19D. T. Longone, G. R. Chipman, J. Chem. Soc. D. 1969, 1358–1359.
- 20
- 20aY. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 12, 1211–1214;
- 20bZ. Liu, R. C. Larock, Org. Lett. 2003, 5, 4673–4675;
- 20cM. Thangaraj, S. S. Bhojgude, R. H. Bisht, R. G. Gonnade, A. T. Biju, J. Org. Chem. 2014, 79, 4757–4762.
- 21Deposition numbers 2380667 (for 10), 2380679 (for 11), 2385577 (for 12′), 2385578 (for 13′), 2380683 (for 30) and 2383045 (for 48) contain the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
- 22
- 22aM. M. Yamano, A. V. Kelleghan, Q. Shao, M. Giroud, B. J. Simmons, B. Li, S. Chen, K. N. Houk, N. K. Garg, Nature 2020, 586, 242–247;
- 22bL. Li, Y. Li, N. Fu, L. Zhang, S. Luo, Angew. Chem. Int. Ed. 2020, 59, 14347–14351;
- 22cD. Pan, M. Pu, H. Wang, M. Ying, Y. Li, S. Dong, X. Feng, X. Liu, J. Am. Chem. Soc. 2023, 145, 26318–26327.
- 23H. Hopf, Angew. Chem. Int. Ed. 2008, 47, 9808–9812.
- 24Z. Hassan, E. Spuling, D. M. Knoll, S. Bräse, Angew. Chem. Int. Ed. 2020, 59, 2156–2170.
- 25A. Bondi, J. Phys. Chem. 1964, 68, 441.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.