Efficient Energy Transfer from Quantum Dots to Closely-Bound Dye Molecules without Spectral Overlap
Mariam Kurashvili
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJordi Llusar
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940 Spain
Contribution: Data curation (supporting)
Search for more papers by this authorLena S. Stickel
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Data curation (supporting)
Search for more papers by this authorTim Würthner
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Data curation (supporting)
Search for more papers by this authorDavid Ederle
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Ivan Infante
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940 Spain
Ikerbasque Basque Foundation for Science, Bilbao, 48009, Spain
Contribution: Funding acquisition (supporting), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Jochen Feldmann
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Funding acquisition (lead), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Quinten A. Akkerman
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Conceptualization (equal), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorMariam Kurashvili
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Conceptualization (supporting), Data curation (lead), Formal analysis (lead), Investigation (lead), Methodology (lead), Writing - original draft (lead)
Search for more papers by this authorJordi Llusar
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940 Spain
Contribution: Data curation (supporting)
Search for more papers by this authorLena S. Stickel
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Data curation (supporting)
Search for more papers by this authorTim Würthner
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Data curation (supporting)
Search for more papers by this authorDavid Ederle
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Formal analysis (supporting)
Search for more papers by this authorCorresponding Author
Ivan Infante
BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940 Spain
Ikerbasque Basque Foundation for Science, Bilbao, 48009, Spain
Contribution: Funding acquisition (supporting), Supervision (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Jochen Feldmann
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Funding acquisition (lead), Supervision (equal), Writing - review & editing (equal)
Search for more papers by this authorCorresponding Author
Quinten A. Akkerman
Chair for Photonics and Optoelectronics, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität (LMU), Königinstraße 10, 80539 Munich, Germany
Contribution: Conceptualization (equal), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorAbstract
Quantum dots (QDs) are semiconductor nanocrystals whose optical properties can be tuned by altering their size. By combining QDs with dyes we can make hybrid QD-dye systems exhibiting energy transfer (ET) between QDs and dyes, which is important in sensing and lighting applications. In conventional QDs that need a shell to passivate surface defects, ET usually proceeds through Förster resonance energy transfer (FRET) that requires significant spectral overlap between QD emission and dye absorbance, as well as large oscillator strengths of those transitions. This considerably limits the choice of dyes. In contrast, perovskite QDs do not require passivating shells for bright emission, which makes ET mechanisms beyond FRET accessible. This work explores the design of a CsPbBr3 QD-dye system to achieve efficient ET from CsPbBr3 QDs to dyes with dimethyl iminium binding groups where the close binding of dyes to CsPbBr3 surface facilitates spatial wavefunction overlap. Using steady-state and time-resolved photoluminescence experiments, we demonstrate that efficient ET from CsPbBr3 to dyes with minimal spectral overlap proceeds via the Dexter exchange-type mechanism, which overcomes the conventional restriction of spectral overlap that severely limits the tunability of these systems. This approach opens new avenues for QD-molecule hybrids for a wide range of applications, such as lighting.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420658-sup-0001-misc_information.pdf2.6 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aA. I. O. Ekimov, A. A, Soviet Journal of Experimental and Theoretical Physics Letters 1981, 34, 345;
- 1bC. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 2002, 115, 8706.
- 2
- 2aW. K. Bae, S. Brovelli, V. I. Klimov, MRS Bull. 2013, 38, 721;
- 2bJ. Lim, Y. S. Park, K. Wu, H. J. Yun, V. I. Klimov, Nano Lett. 2018, 18, 6645.
- 3N. Ahn, C. Livache, V. Pinchetti, H. Jung, H. Jin, D. Hahm, Y. S. Park, V. I. Klimov, Nature 2023, 617, 79.
- 4I. Gur, N. A. Fromer, M. L. Geier, A. P. Alivisatos, Science 2005, 310, 462.
- 5
- 5aH. L. Wu, X. B. Li, C. H. Tung, L. Z. Wu, Adv. Mater. 2019, 31, e1900709;
- 5bA. J. Morris-Cohen, M. D. Peterson, M. T. Frederick, J. M. Kamm, E. A. Weiss, J. Phys. Chem. Lett. 2012, 3, 2840;
- 5cS. Lian, D. J. Weinberg, R. D. Harris, M. S. Kodaimati, E. A. Weiss, ACS Nano 2016, 10, 6372.
- 6C. R. Kagan, L. C. Bassett, C. B. Murray, S. M. Thompson, Chem. Rev. 2021, 121, 3186.
- 7
- 7aA. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi, J. Am. Chem. Soc. 2004, 126, 301;
- 7bM. Achermann, S. Jeong, L. Balet, G. A. Montano, J. A. Hollingsworth, ACS Nano 2011, 5, 1761.
- 8
- 8aH. Choi, R. Nicolaescu, S. Paek, J. Ko, P. V. Kamat, ACS Nano 2011, 5, 9238;
- 8bC. Lelii, M. G. Bawendi, P. Biagini, P. Y. Chen, M. Crucianelli, J. M. D′Arcy, F. De Angelis, P. T. Hammond, R. Po, J. Mater. Chem. A 2014, 2, 18375.
- 9H. Rodriguez-Rodriguez, M. Acebron, F. J. Iborra, J. R. Arias-Gonzalez, B. H. Juarez, ACS Nano 2019, 13, 7223.
- 10M. Yoshioka, M. Yamauchi, N. Tamai, S. Masuo, Nano Lett. 2023, 23, 11548.
- 11
- 11aG. Beane, K. Boldt, N. Kirkwood, P. Mulvaney, J. Phys. Chem. C 2014, 118, 18079;
- 11bA. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, H. Mattoussi, J. Am. Chem. Soc. 2005, 127, 1242;
- 11cG. A. Beane, A. J. Morfa, A. M. Funston, P. Mulvaney, J. Phys. Chem. C 2012, 116, 3305.
- 12
- 12aB. J. Walker, A. J. Musser, D. Beljonne, R. H. Friend, Nat. Chem. 2013, 5, 1019;
- 12bL. Nienhaus, J. P. Correa-Baena, S. Wieghold, M. Einzinger, T. A. Lin, K. E. Shulenberger, N. D. Klein, M. F. Wu, V. Bulovic, T. Buonassisi, M. A. Baldo, M. G. Bawendi, ACS Energy Lett. 2019, 4, 888.
- 13
- 13aT. Förster, Z. Naturforsch. A 1949, 4, 321;
- 13bP. L. H. M. A.Govorov, H. V, Demir, SpringerBriefs in Applied Sciences and Technology 2016.
- 14
- 14aD. L. Dexter, J. Chem. Phys. 1953, 21, 836;
- 14bA. Köhler, H. Bässler, 2015, 406.
- 15R. Lai, Y. Liu, X. Luo, L. Chen, Y. Han, M. Lv, G. Liang, J. Chen, C. Zhang, D. Di, G. D. Scholes, F. N. Castellano, K. Wu, Nat. Commun. 2021, 12, 1532.
- 16
- 16aI. Potapova, R. Mruk, C. Hübner, R. Zentel, T. Basché, A. Mews, Angew. Chem. Int. Ed. 2005, 44, 2437;
- 16bA. R. Clapp, I. L. Medintz, H. Mattoussi, ChemPhysChem 2006, 7, 47;
- 16cA. M. Funston, J. J. Jasieniak, P. Mulvaney, Adv. Mater. 2008, 20, 4274.
- 17Q. A. Akkerman, T. P. T. Nguyen, S. C. Boehme, F. Montanarella, D. N. Dirin, P. Wechsler, F. Beiglböck, G. Rainò, R. Erni, C. Katan, J. Even, M. V. Kovalenko, Science 2022, 377, 1406.
- 18J. Maes, L. Balcaen, E. Drijvers, Q. Zhao, J. De Roo, A. Vantomme, F. Vanhaecke, P. Geiregat, Z. Hens, J. Phys. Chem. Lett. 2018, 9, 3093.
- 19L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 2015, 15, 3692.
- 20
- 20aV. A. Hintermayr, A. F. Richter, F. Ehrat, M. Doblinger, W. Vanderlinden, J. A. Sichert, Y. Tong, L. Polavarapu, J. Feldmann, A. S. Urban, Adv. Mater. 2016, 28, 9478;
- 20bQ. A. Akkerman, Nano Lett. 2022, 22, 8168.
- 21
- 21aQ. A. Akkerman, V. D′Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato, L. Manna, J. Am. Chem. Soc. 2015, 137, 10276;
- 21bP. von Schwerin, M. Doblinger, T. Debnath, J. Feldmann, Q. A. Akkerman, J. Phys. Chem. Lett. 2024, 15, 3728.
- 22
- 22aJ. Ye, M. M. Byranvand, C. O. Martínez, R. L. Z. Hoye, M. Saliba, L. Polavarapu, Angew. Chem. Int. Ed. 2021, 60, 21636;
- 22bN. Fiuza-Maneiro, K. Sun, I. Lopez-Fernandez, S. Gomez-Grana, P. Muller-Buschbaum, L. Polavarapu, ACS Energy Lett. 2023, 8, 1152.
- 23
- 23aJ. Chakkamalayath, L. E. Martin, P. V. Kamat, J. Phys. Chem. Lett. 2024, 401;
- 23bL. G. Feld, S. C. Boehme, V. Morad, Y. Sahin, C. J. Kaul, D. N. Dirin, G. Raino, M. V. Kovalenko, ACS Nano 2024, 18, 9997;
- 23cF. J. Hofmann, M. I. Bodnarchuk, D. N. Dirin, J. Vogelsang, M. V. Kovalenko, J. M. Lupton, Nano Lett. 2019, 19, 8896;
- 23dJ. T. DuBose, P. V. Kamat, J. Am. Chem. Soc. 2023, 145, 4601;
- 23eJ. T. DuBose, P. V. Kamat, J. Am. Chem. Soc. 2021, 143, 19214;
- 23fA. Chemmangat, J. Chakkamalayath, J. T. DuBose, P. V. Kamat, J. Am. Chem. Soc. 2024, 146, 3352;
- 23gF. J. Hofmann, M. I. Bodnarchuk, L. Protesescu, M. V. Kovalenko, J. M. Lupton, J. Vogelsang, J. Phys. Chem. Lett. 2019, 10, 1055;
- 23hC. C. Qin, J. Li, J. Song, S. H. Ma, J. C. Zhang, G. R. Jia, Z. Y. Jiao, Z. L. Zhu, Y. H. Jiang, Z. P. Zhou, Results in Physics 2023, 51, 106664;
- 23iA. Rossi, M. B. Price, J. Hardy, J. Gorman, T. W. Schmidt, N. J. L. K. Davis, J. Phys. Chem. C 2020, 124, 3306.
- 24
- 24aX. Luo, G. Liang, Y. Han, Y. Li, T. Ding, S. He, X. Liu, K. Wu, J. Am. Chem. Soc. 2020, 142, 11270;
- 24bK. Mase, K. Okumura, N. Yanai, N. Kimizuka, Chem. Commun. 2017, 53, 8261;
- 24cX. Luo, R. Lai, Y. Li, Y. Han, G. Liang, X. Liu, T. Ding, J. Wang, K. Wu, J. Am. Chem. Soc. 2019, 141, 4186;
- 24dX. Luo, Y. Han, Z. Chen, Y. Li, G. Liang, X. Liu, T. Ding, C. Nie, M. Wang, F. N. Castellano, K. Wu, Nat. Commun. 2020, 11, 28.
- 25
- 25aJ. T. DuBose, P. V. Kamat, J. Phys. Chem. Lett. 2019, 10, 6074;
- 25bS. Singh, D. Mittal, V. Gurunarayanan, A. Sahu, R. Ramapanicker, V. Govind Rao, J. Mater. Chem. A 2022, 10, 21112.
- 26J. Hardy, M. W. Brett, A. Rossi, I. Wagner, K. Chen, M. S. M. Timmer, B. L. Stocker, M. B. Price, N. J. L. K. Davis, J. Phys. Chem. C 2021, 125, 1447.
- 27N. Wu, N. Kirkwood, N. S. Neto, R. Pervin, P. Mulvaney, W. W. H. Wong, J. Phys. Chem. C 2023, 127, 2116.
- 28A. Barfusser, S. Rieger, A. Dey, A. Tosun, Q. A. Akkerman, T. Debnath, J. Feldmann, Nano Lett. 2022, 22, 8810.
- 29ATTO 610, https://www.atto-tec.com/ATTO-610.html, accessed: 26. 04. 2024.
- 30K. Wang, R. P. Cline, J. Schwan, J. M. Strain, S. T. Roberts, L. Mangolini, J. D. Eaves, M. L. Tang, Nat. Chem. 2023, 15, 1172.
- 31J. L. Bricks, Y. L. Slominskii, I. D. Panas, A. P. Demchenko, Methods Appl. Fluoresc. 2017, 6, 012001.
- 32J. Vollbrecht, New J. Chem. 2018, 42, 11249.
- 33
- 33aY. Waka, K. Hamamoto, N. Mataga, Photochem. Photobiol. 1980, 32, 27;
- 33bJ. C. Dederen, M. Van der Auweraer, F. C. De Schryver, J. Phys. Chem. 1981, 85, 1198;
- 33cM. H. Gehlen, F. C. De Schryver, J. Phys. Chem. 1993, 97, 11242;
- 33dY. Masumoto, T. Kawamura, T. Ohzeki, S. Urabe, Phys. Rev. B 1992, 46, 1827;
- 33eS. Sadhu, M. Tachiya, A. Patra, J. Phys. Chem. C 2009, 113, 19488.
- 34I. Vincon, A. Barfusser, J. Feldmann, Q. A. Akkerman, J. Am. Chem. Soc. 2023, 145, 14395.
- 35K. Becker, J. M. Lupton, J. Muller, A. L. Rogach, D. V. Talapin, H. Weller, J. Feldmann, Nat. Mater. 2006, 5, 777.
- 36J. I. Pankove, Optical Processes in Semiconductors, Dover, 1975.
- 37J. B. Hoffman, H. Choi, P. V. Kamat, J. Phys. Chem. C 2014, 118, 18453.
- 38
- 38aH. Langhals, A. Walter, J. Phys. Chem. A 2020, 124, 1554;
- 38bW. Lin, L. Yuan, Z. Cao, Y. Feng, J. Song, Angew. Chem. Int. Ed. Engl. 2010, 49, 375;
- 38cJ. R. Maccallum, L. Rudkin, Nature 1977, 266, 338;
- 38dH. Langhals, A. J. Esterbauer, A. Walter, E. Riedle, I. Pugliesi, J. Am. Chem. Soc. 2010, 132, 16777;
- 38eK. Becker, J. M. Lupton, J. Feldmann, S. Setayesh, A. C. Grimsdale, K. Mullen, J. Am. Chem. Soc. 2006, 128, 680;
- 38fG. S. Jiao, L. H. Thoresen, K. Burgess, J. Am. Chem. Soc. 2003, 125, 14668;
- 38gR. Bandichhor, A. D. Petrescu, A. Vespa, A. B. Kier, F. Schroeder, K. Burgess, J. Am. Chem. Soc. 2006, 128, 10688;
- 38hY. J. Gong, X. B. Zhang, C. C. Zhang, A. L. Luo, T. Fu, W. Tan, G. L. Shen, R. Q. Yu, Anal. Chem. 2012, 84, 10777;
- 38iG. D. Scholes, Annu. Rev. Phys. Chem. 2003, 54, 57.
- 39
- 39aK. Ilina, W. M. MacCuaig, M. Laramie, J. N. Jeouty, L. R. McNally, M. Henary, Bioconjugate Chem. 2020, 31, 194;
- 39bE. Lima, L. V. Reis, Future Med. Chem. 2022, 14, 1375.
- 40
- 40aL. De Trizio, I. Infante, L. Manna, Acc. Chem. Res. 2023, 56, 1815;
- 40bS. P. Sun, P. Huang, X. G. Wu, C. L. Chen, X. M. Hu, Z. L. Bai, A. Pushkarev, H. Z. Zhong, J. Phys. Chem. C 2024, 128, 3602.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.