Deciphering the Impact of Aromatic Linkers in Self-Assembled Monolayers on the Performance of Monolithic Perovskite/Si Tandem Photovoltaic
Chi Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYong Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorYuheng Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorLijie Gong
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorZhen Yuan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021 China
Search for more papers by this authorLusheng Liang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorProf. Jinglin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou, 341000 China
Search for more papers by this authorParamaguru Ganesan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorYixian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Jing Ma
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Peng Gao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorChi Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work.
Search for more papers by this authorYong Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou, 341000 China
These authors contributed equally to this work.
Search for more papers by this authorYuheng Li
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorLijie Gong
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorZhen Yuan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021 China
Search for more papers by this authorLusheng Liang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorProf. Jinglin Chen
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou, 341000 China
Search for more papers by this authorParamaguru Ganesan
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
Search for more papers by this authorYixian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Jing Ma
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444 China
Search for more papers by this authorCorresponding Author
Prof. Peng Gao
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 China
Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Aromatic linker-constructed self-assembled monolayers (Ar-SAMs) with enlarged dipole moment can modulate the work function of indium tin oxide (ITO), thereby improving hole extraction/transport efficiency. However, the specific role of the aromatic linkers between the polycyclic head and the anchoring groups of SAMs in determining the performance of perovskite solar cells (PSCs) remains unclear. In this study, we developed a series of phenothiazine-based Ar-SAMs to investigate how different aromatic linkers could affect molecular stacking, the regulation of substrate work function, and charge carrier dynamics. When served as hole-selective layers (HSLs) in PSCs and monolithic perovskite/silicon tandem solar cells (P/S-TSCs), we found that the Ar-SAM with naphthalene linker along the 2,6-position axis (β-Nap) could form dense and highly ordered HSLs, enhancing interfacial interactions and favoring optimal energy level alignment with the perovskite films. Using this strategy, the optimized wide-band gap PSCs achieved an impressive power conversion efficiency (PCE) of 21.86 % with negligible hysteresis, utilizing a 1.68 eV perovskite. Additionally, the encapsulated devices demonstrated enhanced stability under damp-heat conditions (ISOS-D-2, 50 % RH, 65 °C) with a T91 of 1000 hours. Notably, the fabricated P/S-TSCs, based on solution-processed micron-scale textured silicon heterojunction (SHJ) solar cells, achieved an efficiency of 28.89 % while maintaining outstanding reproducibility. This strategy holds significant promise for developing aromatic linking groups to enhance the hole selectivity of SAMs.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420585-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Q. Jiang, J. Tong, Y. Xian, R. A. Kerner, S. P. Dunfield, C. Xiao, R. A. Scheidt, D. Kuciauskas, X. Wang, M. P. Hautzinger, R. Tirawat, M. C. Beard, D. P. Fenning, J. J. Berry, B. W. Larson, Y. Yan, K. Zhu, Nature 2022, 611, 278–283.
- 2H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, Z. Wang, L. Zeng, S. M. Park, L. Chen, P. Serles, R. A. Awni, B. Subedi, X. Zheng, C. Xiao, N. J. Podraza, T. Filleter, C. Liu, Y. Yang, J. M. Luther, S. De Wolf, M. G. Kanatzidis, Y. Yan, E. H. Sargent, Nature 2022, 613, 676–681.
- 3C. Li, X. Wang, E. Bi, F. Jiang, S. M. Park, Y. Li, L. Chen, Z. Wang, L. Zeng, H. Chen, Y. Liu, C. R. Grice, A. Abudulimu, J. Chung, Y. Xian, T. Zhu, H. Lai, B. Chen, R. J. Ellingson, F. Fu, D. S. Ginger, Z. Song, E. H. Sargent, Y. Yan, Science 2023, 379, 690–694.
- 4S. Yu, Z. Xiong, H. Zhou, Q. Zhang, Z. Wang, F. Ma, Z. Qu, Y. Zhao, X. Chu, X. Zhang, J. You, Science 2023, 382, 1399–1404.
- 5M. Li, M. Liu, F. Qi, F. R. Lin, A. K.-Y. Jen, Chem. Rev. 2024, 124, 2138–2204.
- 6H. Tang, Z. Shen, Y. Shen, G. Yan, Y. Wang, Q. Han, L. Han, Science 2024, 383, 1236–1240.
- 7C. Li, Y. Chen, Z. Zhang, C. Liu, F. Guo, W. Ahmad, P. Gao, Energy Environ. Sci. 2024, 17, 6157–6203.
- 8Z. Liang, Y. Zhang, H. Xu, W. Chen, B. Liu, J. Zhang, H. Zhang, Z. Wang, D.-H. Kang, J. Zeng, X. Gao, Q. Wang, H. Hu, H. Zhou, X. Cai, X. Tian, P. Reiss, B. Xu, T. Kirchartz, Z. Xiao, S. Dai, N.-G. Park, J. Ye, X. Pan, Nature 2023, 624, 557–563.
- 9S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. Musiienko, D. Menzel, F. Lang, S. Keßler, I. Levine, D. Mantione, A. Al-Ashouri, M. S. Härtel, K. Xu, A. Cruz, J. Kurpiers, P. Wagner, H. Köbler, J. Li, A. Magomedov, D. Mecerreyes, E. Unger, A. Abate, M. Stolterfoht, B. Stannowski, R. Schlatmann, L. Korte, S. Albrecht, Science 2023, 381, 63–69.
- 10P. Zhu, D. Wang, Y. Zhang, Z. Liang, J. Li, J. Zeng, J. Zhang, Y. Xu, S. Wu, Z. Liu, X. Zhou, B. Hu, F. He, L. Zhang, X. Pan, X. Wang, N.-G. Park, B. Xu, Science 2024, 383, 524–531.
- 11R. Azmi, D. S. Utomo, B. Vishal, S. Zhumagali, P. Dally, A. M. Risqi, A. Prasetio, E. Ugur, F. Cao, I. F. Imran, A. A. Said, A. R. Pininti, A. S. Subbiah, E. Aydin, C. Xiao, S. Il Seok, S. De Wolf, Nature 2024, 628, 93–98.
- 12Best Research-Cell Efficiencies Chart https://www.nrel.gov/pv/cell-efficiency.html accessed 20 October, 2024. n.d.
- 13M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, Prog. Photovolt. Res. Appl. 2024, 32, 3–13.
- 14A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J. A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C. J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C. A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Energy Environ. Sci. 2019, 12, 3356–3369.
- 15A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J. A. Márquez, A. B. Morales Vilches, E. Kasparavicius, J. A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Science 2020, 370, 1300–1309.
- 16R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, Y. Luo, C. Wang, H. Lai, H. Huang, J. Zhou, B. Zou, X. Yin, S. Ren, X. Hao, L. Wu, J. Zhang, J. Zhang, M. Stolterfoht, F. Fu, W. Tang, D. Zhao, Nature 2023, 618, 80–86.
- 17Z. Li, X. Sun, X. Zheng, B. Li, D. Gao, S. Zhang, X. Wu, S. Li, J. Gong, J. M. Luther, Z. Li, Z. Zhu, Science 2023, 382, 284–289.
- 18R. Guo, X. Zhang, X. Zheng, L. Li, M. Li, Y. Zhao, S. Zhang, L. Luo, S. You, W. Li, Z. Gong, R. Huang, Y. Cui, Y. Rong, H. Zeng, X. Li, Adv. Funct. Mater. 2023, 33, 2211955.
- 19J. Zhu, Y. Luo, R. He, C. Chen, Y. Wang, J. Luo, Z. Yi, J. Thiesbrummel, C. Wang, F. Lang, H. Lai, Y. Xu, J. Wang, Z. Zhang, W. Liang, G. Cui, S. Ren, X. Hao, H. Huang, Y. Wang, F. Yao, Q. Lin, L. Wu, J. Zhang, M. Stolterfoht, F. Fu, D. Zhao, Nat. Energy 2023, 8, 714–724.
- 20A. Ullah, K. H. Park, Y. Lee, S. Park, A. B. Faheem, H. D. Nguyen, Y. Siddique, K.-K. Lee, Y. Jo, C.-H. Han, S. Ahn, I. Jeong, S. Cho, B. Kim, Y. S. Park, S. Hong, Adv. Funct. Mater. 2022, 33, 2208793.
- 21H. Zhang, S. Zhang, X. Ji, J. He, H. Guo, S. Wang, W. Wu, W.-H. Zhu, Y. Wu, Angew. Chem. Int. Ed. 2024, 63, e202401260.
- 22C. Li, Z. Zhang, H. Zhang, W. Yan, Y. Li, L. Liang, W. Yu, X. Yu, Y. Wang, Y. Yang, M. K. Nazeeruddin, P. Gao, Angew. Chem. Int. Ed. 2023, 63, e202315281.
- 23G. Qu, S. Cai, Y. Qiao, D. Wang, S. Gong, D. Khan, Y. Wang, K. Jiang, Q. Chen, L. Zhang, Y.-G. Wang, X. Chen, A. K.-Y. Jen, Z.-X. Xu, Joule 2024, 8, 2123–2134.
- 24W. Jiang, F. Li, M. Li, F. Qi, F. R. Lin, A. K.-Y Jen, Angew. Chem. Int. Ed. 2022, 61, e202213560.
- 25G. Wang, J. Zheng, W. Duan, J. Yang, M. A. Mahmud, Q. Lian, S. Tang, C. Liao, J. Bing, J. Yi, T. L. Leung, X. Cui, H. Chen, F. Jiang, Y. Huang, A. Lambertz, M. Jankovec, M. Topič, S. Bremner, Y.-Z. Zhang, C. Cheng, K. Ding, A. Ho-Baillie, Joule 2023, 7, 2583–2594.
- 26Q. Tan, Z. Li, G. Luo, X. Zhang, B. Che, G. Chen, H. Gao, D. He, G. Ma, J. Wang, J. Xiu, H. Yi, T. Chen, Z. He, Nature 2023, 620, 545–551.
- 27T. Wu, X. Xu, L. K. Ono, T. Guo, S. Mariotti, C. Ding, S. Yuan, C. Zhang, J. Zhang, K. Mitrofanov, Q. Zhang, S. Raj, X. Liu, H. Segawa, P. Ji, T. Li, R. Kabe, L. Han, A. Narita, Y. Qi, Adv. Mater. 2023, 35, 2300169.
- 28E. Aktas, N. Phung, H. Köbler, D. A. González, M. Méndez, I. Kafedjiska, S.-H. Turren-Cruz, R. Wenisch, I. Lauermann, A. Abate, E. Palomares, Energy Environ. Sci. 2021, 14, 3976–3985.
- 29S. Zhang, F. Ye, X. Wang, R. Chen, H. Zhang, L. Zhan, X. Jiang, Y. Li, X. Ji, S. Liu, M. Yu, F. Yu, Y. Zhang, R. Wu, Z. Liu, Z. Ning, D. Neher, L. Han, Y. Lin, H. Tian, W. Chen, M. Stolterfoht, L. Zhang, W.-H. Zhu, Y. Wu, Science 2023, 380, 404–409.
- 30Y. Wang, Q. Liao, J. Chen, W. Huang, X. Zhuang, Y. Tang, B. Li, X. Yao, X. Feng, X. Zhang, M. Su, Z. He, T. J. Marks, A. Facchetti, X. Guo, J. Am. Chem. Soc. 2020, 142, 16632–16643.
- 31Q. Liao, Y. Wang, Z. Zhang, K. Yang, Y. Shi, K. Feng, B. Li, J. Huang, P. Gao, X. Guo, J. Energy Chem. 2022, 68, 87–95.
- 32H. Guo, C. Liu, H. Hu, S. Zhang, X. Ji, X.-M. Cao, Z. Ning, W.-H. Zhu, H. Tian, Y. Wu, Natl. Sci. Rev. 2023, 10, nwad057.
- 33M. Azam, T. Du, Z. Wan, H. Zhao, H. Zeng, R. Wei, C. J. Brabec, J. Luo, C. Jia, Energy Environ. Sci. 2024, 17, 6974–7016.
- 34W. Jiang, M. Liu, Y. Li, F. R. Lin, A. K.-Y. Jen, Chem. Sci. 2024, 15, 2778–2785.
- 35A. Ullah, K. H. Park, H. D. Nguyen, Y. Siddique, S. F. A. Shah, H. Tran, S. Park, S. I. Lee, K.-K. Lee, C.-H. Han, K. Kim, S. Ahn, I. Jeong, Y. S. Park, S. Hong, Adv. Energy Mater. 2022, 12, 2103175.
- 36M. Li, Z. Li, M. Liu, H. Fu, F. Qi, F. R. Lin, A. Walsh, A. K.-Y. Jen, Langmuir 2024, 40, 4772–4778.
- 37D. Liu, X. Wu, C. Gao, C. Li, Y. Zheng, Y. Li, Z. Xie, D. Ji, X. Liu, X. Zhang, L. Li, Q. Peng, W. Hu, H. Dong, Angew. Chem. Int. Ed. 2022, 61, e202200791.
- 38G. Zhang, J. Sun, P. Xue, Z. Zhang, P. Gong, J. Peng, R. Lu, J. Mater. Chem. C 2015, 3, 2925–2932.
- 39C.-L. Mai, Q. Xiong, X. Li, J.-Y. Chen, J.-Y. Chen, C.-C. Chen, J. Xu, C. Liu, C.-Y. Yeh, P. Gao, Angew. Chem. Int. Ed. 2022, 61, e202209365.
- 40Y. Li, X.-L. Li, X. Cai, D. Chen, X. Liu, G. Xie, Z. Wang, Y.-C. Wu, C.-C. Lo, A. Lien, J. Peng, Y. Cao, S.-J. Su, J. Mater. Chem. C 2015, 3, 6986–6996.
- 41X. Wang, J. Zhang, S. Yu, W. Yu, P. Fu, X. Liu, D. Tu, X. Guo, C. Li, Angew. Chem. Int. Ed. 2018, 57, 12529–12533.
- 42W. Jiang, D. Wang, W. Shang, Y. Li, J. Zeng, P. Zhu, B. Zhang, L. Mei, X.-K. Chen, Z.-X. Xu, F. R. Lin, B. Xu, A. K.-Y. Jen, Angew. Chem. Int. Ed. 2024, 63, e202411730.
- 43Q. Zhao, F. He, J. Energy Chem. 2024, 93, 174–192.
- 44C. Li, P. Gao, Chin. J. Struct. Chem. 2024, 43, 100324.
- 45M. Halik, A. Hirsch, Adv. Mater. 2011, 23, 2689–2695.
- 46X. Zhang, H. Dong, W. Hu, Adv. Mater. 2018, 30, 1801048.
- 47T. Sarkar, S. A. Schneider, G. Ankonina, A. D. Hendsbee, Y. Li, M. F. Toney, G. L. Frey, Chem. Mater. 2020, 32, 7338–7346.
- 48M. Liu, L. Bi, W. Jiang, Z. Zeng, S. Tsang, F. R. Lin, A. K.-Y Jen, Adv. Mater. 2023, 35, 2304415.
- 49E. Li, C. Liu, H. Lin, X. Xu, S. Liu, S. Zhang, M. Yu, X. Cao, Y. Wu, W. Zhu, Adv. Funct. Mater. 2021, 31, 2103847.
- 50C. Li, Y. Li, Y. Chen, H. Zhang, S.-T. Zhang, Z. Zhang, F. Lin, L. Liang, L. Gong, H. Hao, J. Wang, S. Bao, Y. Yang, M. K. Nazeeruddin, D. Li, P. Gao, Adv. Funct. Mater. 2024, 2407805.
- 51J. Sun, C. Shou, J. Sun, X. Wang, Z. Yang, Y. Chen, J. Wu, W. Yang, H. Long, Z. Ying, X. Yang, J. Sheng, B. Yan, J. Ye, Solar RRL 2021, 5, 2100663.
- 52Q. Zhou, J. Qiu, Y. Wang, S. Li, M. Yu, J. Liu, X. Zhang, Chem. Eng. J. 2022, 440, 135974.
- 53C. Wang, Q. Xiong, Z. Zhang, L. Meng, F. Li, L. Yang, X. Wang, Q. Zhou, W. Fan, L. Liang, S.-Y. Lien, X. Li, J. Wu, P. Gao, ACS Appl. Mater. Interfaces 2022, 14, 12640–12651.
- 54T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555.
- 55C. Li, J. Qiu, M. Zhu, Z. Cheng, J. Zhang, S. Xiang, X. Zhang, Z. Zhang, Chem. Eng. J. 2022, 433, 133587.
- 56J. A. Bardecker, H. Ma, T. Kim, F. Huang, M. S. Liu, Y.-J. Cheng, G. Ting, A. K.-Y. Jen, Adv. Funct. Mater. 2008, 18, 3964–3971.
- 57C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, J. Huang, Nat. Commun. 2015, 6, 7747.
- 58Y. Wang, Y. Li, C. Li, C. Wang, Q. Zhou, L. Liang, Z. Zhang, C. Liu, W. Yu, X. Yu, P. Gao, Small 2024, 20, 2402531.
- 59C. Li, S. Dogan, Y. Li, H. Zhang, S. Tang, Z. Yuan, L. Liang, Z. Zhang, Y. Wang, C. Liu, Y. Yang, M. Ince, P. Gao, Adv. Energy Mater. 2024, 2402856.
- 60Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther, M. C. Beard, Nat. Commun. 2015, 6, 7961.
- 61J. Zhang, C. Li, M. Zhu, J. Qiu, Y. Yang, L. Li, S. Tang, Z. Li, Z. Mao, Z. Cheng, S. Xiang, X. Zhang, Z. Zhang, Nano Energy 2023, 108, 108217.
- 62E. Ugur, A. A. Said, P. Dally, S. Zhang, C. E. Petoukhoff, D. Rosas-Villalva, S. Zhumagali, B. K. Yildirim, A. Razzaq, S. Sarwade, A. Yazmaciyan, D. Baran, F. Laquai, C. Deger, I. Yavuz, T. G. Allen, E. Aydin, S. De Wolf, Science 2024, 385, 533–538.
- 63X. Li, Z. Ying, J. Zheng, X. Wang, Y. Chen, M. Wu, C. Xiao, J. Sun, C. Shou, Z. Yang, Y. Zeng, X. Yang, J. Ye, Adv. Mater. 2023, 35, 2211962.
- 64Z. Ying, X. Yang, X. Wang, J. Ye, Adv. Mater. 2024, 36, 2311501.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.