Catalytic Asymmetric 1,4-Hydrocarbonation of 1,3-Enynes via Photoredox/Cobalt/Chromium Triple Catalysis
Ju-Song Yang
School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240 China
Search for more papers by this authorXing-Yu Wang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYong-Yao Li
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Fu-Min Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiao-Ming Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Yong-Qiang Tu
School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240 China
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorJu-Song Yang
School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240 China
Search for more papers by this authorXing-Yu Wang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorYong-Yao Li
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Fu-Min Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorXiao-Ming Zhang
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorCorresponding Author
Yong-Qiang Tu
School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, Shanghai key Laboratory of Chiral Drugs and Engineering, Shanghai Jiao Tong University, Shanghai Minhang, 200240 China
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 China
Search for more papers by this authorAbstract
A synergistic photoredox/cobalt/chromium triple catalysis system for regioselective, enantioselective, and diastereoselective 1,4-hydrocarbonation of readily available 1,3-enyne precursors was explored, providing a modular synthetic platform for various trisubstituted axially chiral allenes bearing an extra central chirality. The protocol features a broad substrate scope, good functional group tolerance, excellent selectivity, and mild reaction conditions. Furthermore, a possible reaction mechanism is proposed based on numerous control experiments and density functional theory calculations.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420563-sup-0001-misc_information.pdf21.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For selected reviews on 1,4-difunctionalization of 1,3-enynes, see:
- 1aD. Quentin, M. Srimanta, J. T. T. Fabien, P. Watcharapon, J. P. P. Gregory, J. P. David, Chem. Sci. 2020, 11, 11380–11393;
- 1bL. Fu, G. Steffen, P. Chen, G.-S. Liu, Chin. J. Chem. 2020, 38, 91–100;
- 1cY.-J. Li, H.-L. Bao, Chem. Sci. 2022, 13, 8491–8506;
- 1dX.-M. Ma, Q. Zhang, W. Zhang, Molecules 2023, 28, 3027–3027;
- 1eS.-J. Li, K.-Y. Yuan, G.-Z. Zhang, R. Guo, Eur. J. Org. Chem. 2024, 27, e202301316.
- 2For selected catalytic asymmetric examples on 1,4-difunctionalization of 1,3-enynes, see:
- 2aW. Zhang, S.-Q. Zheng, N. Liu, B. W. Jenny, A. G. Ilia, W.-P. Tang, J. Am. Chem. Soc. 2010, 132, 3664–3665;
- 2bA. Tap, A. Blond, V. N. Wakchaure, B. List, Angew. Chem. Int. Ed. 2016, 55, 8962–8965;
- 2cY. Liao, X.-M. Yin, X.-H. Wang, W.-Z. Yu, D.-M. Fang, L.-R. Hu, M. Wang, J. Liao, Angew. Chem. Int. Ed. 2020, 59, 1176–1180;
- 2dY. Zeng, M.-F. Chiou, X. Zhu, J. Cao, D. Lv, W. Jian, Y. Li, X. Zhang, H.-L. Bao, J. Am. Chem. Soc. 2020, 142, 18014–18021;
- 2eJ. Wang, S. Zheng, S. Rajkumar, J. Xie, N. Yu, Q. Peng, X.-Y. Yang, Nat. Commun. 2020, 11, 5527–5527;
- 2fX.-G. Li, J.-W. Sun, Angew. Chem. Int. Ed. 2020, 59, 17049–17054;
- 2gC.-Y. Law, E. Kativhu, J. Wang, J. P. Morken, Angew. Chem. Int. Ed. 2020, 59, 17049–17054;
- 2hX.-Y. Dong, T.-Y. Zhan, S.-P. Jiang, X.-D. Liu, L. Ye, Z.-L. Li, Q.-S. Gu, X.-Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 2160–2164;
- 2iC. Xu, J. P. Tassone, B. Q. Mercado, J. A. Ellman, Angew. Chem. Int. Ed. 2022, 61, e202202364;
- 2jK. Peng, Y. Cao, Q. Wang, Z. Xia, Y. Chen, Y.-X. Lu, G.-J. Deng, ACS Catal. 2024, 14, 14048–14057;
- 2kW. Li, H. Chen, Y. Zheng, Y. Lu, J. Xie, S. Chen, Y. Lan, Q.-L. Song, ACS Catal. 2024, 14, 11318–11331;
- 2lJ. Du, A. Liu, W. Zhang, S. Luo, H. Yao, Y.-L. He, ACS Catal. 2024, 14, 13940–13946;
- 2mW. Su, J. Zhu, Y. Chen, X. Zhang, W. Qiu, K. Yang, P. Yu, Q.-L. Song, Nat. Chem. 2024, 16, 1312–1319.
- 3For selected racemic examples about 1,4-difunctionalization of 1,3-enynes, see:
- 3aZ. Cheng, J. Zhang, C. Li, X. Li, P. Chen, G.-S. Liu, J. Am. Chem. Soc. 2024, 146, 24689–24698;
- 3bF. Wang, D. Wang, Y. Zhou, L. Liang, R. Lu, P. Chen, Z. Lin, G.-S. Liu, Angew. Chem. Int. Ed. 2018, 57, 7140–7145;
- 3cX. Zhu, W. Deng, M.-F. Chiou, C. Ye, W. Jian, Y. Zeng, Y. Jiao, L. Ge, Y. Li, X. Zhang, H.-L. Bao, J. Am. Chem. Soc. 2019, 141, 548–559;
- 3dQ. Zhang, R. Ma, J. Sun, G. Zheng, Q. Zhang, Chem. Sci. 2022, 13, 3169–3175;
- 3eF. He, P. Bao, F. Yu, L.-H. Zeng, W.-P. Deng, J. Wu, Org. Lett. 2021, 23, 7472–7476.
- 4
- 4aM. M. Salter, V. Gevorgyan, S. Saito, Y. Yamamoto, Chem. Commun. 1996, 17–18;
- 4bJ.-W. Han, N. Tokunaga, T. Hayashi, J. Am. Chem. Soc. 2001, 123, 12915–12916;
- 4cN. J. Adamson, H. Jeddi, S. J. Malcolmson, J. Am. Chem. Soc. 2019, 141, 8574–8583;
- 4dH. Tsukamoto, T. Konno, K. Ito, T. Doi, Org. Lett. 2019, 21, 6811–6814;
- 4eS.-Q. Yang, Y.-F. Wang, W.-C. Zhao, G.-Q. Lin, Z.-T. He, J. Am. Chem. Soc. 2021, 143, 7285–7291;
- 4fC. You, M. Shi, X. Mi, S.-Z. Luo, Nat. Commun. 2023, 14, 2911–2911;
- 4gB.-Y. Xie, Z.-T. He, ACS Catal. 2024, 14, 9742–9751;
- 4hM. Eaton, Y. Dai, Z. Wang, B. Li, W. Lamine, K. Miqueu, S. Y. Liu, J. Am. Chem. Soc. 2023, 145, 21638–21645.
- 5T. Nishimura, H. Makino, M. Nagaosa, T. Hayashi, J. Am. Chem. Soc. 2010, 132, 12865–12867.
- 6
- 6aY. Huang, J. D. Pozo, S. Torker, A. H. Hoveyda, J. Am. Chem. Soc. 2018, 140, 2643–2655;
- 6bD.-W. Gao, Y. Xiao, M. Liu, Z. Liu, M. K. Karnananda, J. S. Chen, K. M. Engle, ACS Catal. 2018, 8, 3650–3654;
- 6cH. Sang, S. Yu, S.-Z. Ge, Org. Chem. Front. 2018, 5, 1284–1287;
- 6dS. Yu, H.-L. Sang, S.-Q. Zhang, X. Hong, S.-Z. Ge, Commun. Chem. 2018, 1, 64;
- 6eL. Bayeh-Romero, S. L. Buchwald, J. Am. Chem. Soc. 2019, 141, 13788–13794;
- 6fC.-Y. He, Y.-X. Tan, X. Wang, R. Ding, Y−F. Wang, F. Wang, D. Gao, P. Tian, G.-Q. Lin, Nat. Commun. 2020, 11, 4293;
- 6gC. Yang, Z.-L. Liu, D.-T. Dai, Q. Li, W.-W. Ma, M. Zhao, Y.-H. Xu, Org. Lett. 2020, 22, 1360–1367;
- 6hQ. Li, Z.-L. Wang, H.-X. Lu, Y.-X. Xu, Org. Lett. 2022, 24, 2832–2836;
- 6iZ.-L. Wang, Q. Li, M.-W. Yang, Z.-X. Song, Z.-Y. Xiao, W.-W. Ma, J.-B. Zhao, Y.-H. Xu, Nat. Commun. 2023, 14, 5048;
- 6jC. Jin, X. He, S. Chen, Z. Guo, Y. Lan, X. Shen, Chem 2023, 9, 2956–2970.
- 7Q. Yao, Y. Liao, L. Lin, X. Lin, J. Ji, X.-H. Liu, X.-M. Feng, Angew. Chem. Int. Ed. 2016, 55, 1859–1863.
- 8Y. Zhang, J. Yang, Y.-L. Ruan, L. Liao, C. Ma, X.-S. Xue, J.-S. Yu, Chem. Sci. 2023, 14, 12676–12683.
- 9
- 9aH. Qian, X. Yu, J. Zhang, J.-W. Sun, J. Am. Chem. Soc. 2013, 135, 18020–18023;
- 9bS. Tang, P. Zhang, Y. Shao, J. Sun, Nat. Commun. 2022, 13, 3146.
- 10
- 10aU. Radhakrishnan, M. Al-Masum, Y. Yamamoto, Tetrahedron Lett. 1998, 39, 1037–1040;
- 10bX.-X. Wang, X. Lu, Y. Li, J.-W. Wang, Y. Fu, Sci. China Chem. 2020, 63, 1586–1600.
- 11A. Hossain, R. L. Anderson, C. S. Zhang, P.-J. Chen, G.-C. Fu, J. Am. Chem. Soc. 2024, 146, 7173–7177.
- 12For selected reviews on MHAT of alkenes, see:
- 12aS. W. M. Crossley, C. Obradors, R. M. Martinez, R. A. Shenvi, Chem. Rev. 2016, 116, 8912–9000;
- 12bS. A. Green, S. W. M. Crossley, J. L. M. Matos, S. Vasquez-Cespedes, S. L. Shevick, R. A. Shenvi, Acc. Chem. Res. 2018, 51, 2628–2640;
- 12cS. Kotesova, R. A. Shenvi, Acc. Chem. Res. 2023, 56, 3089–3098;
- 12dS. H. Kyne, G. Lefevre, C. Ollivier, M. Petit, V. R. Cladera, L. Fensterbank, Chem. Soc. Rev. 2020, 49, 8501–8542.
- 13For selected examples about MHAT of alkenes, see:
- 13aS. A. Green, J. N. M. Matos, A. Yagi, R. A. Shenvi, J. Am. Chem. Soc. 2016, 138, 12779–12782;
- 13bX.-L. Zhou, F. Yang, H.-L. Sun, Y.-N. Yin, W.-T. Ye, R. Zhu, J. Am. Chem. Soc. 2019, 141, 7250–7255;
- 13cK. Ebisawa, K. Izumi, Y. Ooka, H. Kato, S. Kanazawa, S. Komatsu, E. Nishi, H. Shigehisa, J. Am. Chem. Soc. 2020, 142, 13481–13490;
- 13dF. Yang, Y.-C. Nie, H.-Y. Liu, L. Zhang, F. Mo, R. Zhu, ACS Catal. 2022, 12, 2132–2137;
- 13eM. Nakagawa, Y. Matsuki, K. Nagao, H. A. Ohmiya, J. Am. Chem. Soc. 2022, 144, 7953–7959;
- 13fS. H. Park, G. Bae, A. Choi, S. Shin, K. Shin, C. H. Choi, H. Kim, J. Am. Chem. Soc. 2023, 145, 15360–15369;
- 13gX.-C. Gan, B.-X. Zhang, N. Dao, C. Bi, M. Pokle, L. Kan, M. R. Collins, C. C. Tyrol, P. N. Bolduc, M. Nicastri, Y. Kawamata, P. S. Baran, R. A. Shenvi, Science 2024, 384, 113–118.
- 14J. L. M. Matos, S. Vasquez-Cespedes, J. Gu, T. Oguma, R. A. Shenvi, J. Am. Chem. Soc. 2018, 140, 16976–16981.
- 15
- 15aH. Yan, J.-R. Shan, L. Shi, ChemCatChem 2024, 16, e202301344;
- 15bF. Li, S. Lin, Y. Chen, C. Shi, H. Yan, C. Li, C. Wu, L. Lin, C. Duan, L. Shi, Angew. Chem. Int. Ed. 2021, 60, 1561–1566;
- 15cH. Yan, Q. Liao, Y. Chen, G. G. Gurzadyan, B. Lu, C. Wu, L. Shi, Angew. Chem. Int. Ed. 2023, 62, e202302483;
- 15dH. Yan, J.-R. Shan, F. Zhang, Y. Chen, X. Zhang, Q. Liao, E. Hao, L. Shi, Org. Lett. 2023, 25, 7694–7699;
- 15eH. Yan, D. Zhang, Y. Liu, X. Wang, Z. Wu, Y. Jin, X. Ding, J.-R. Shan, E. Hao, L. Shi, Org. Chem. Front. 2024, 11, 684–689.
- 16H. Shen, Z. Zhang, Z. Shi, K. Gao, Z.-B. Wang, Chem 2024, 10, 1–17.
- 17
- 17aJ. Waser, J. C. Gonzalez-Gomez, H. Nambu, P. Huber, E. M. Carreira, Org. Lett. 2005, 7, 4249–4252;
- 17bJ. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693–11712.
- 18
- 18aJ. Qin, M. Barday, S. Jana, N. Sanosa, I. Funes-Ardoiz, C. Teskey, Angew. Chem. Int. Ed. 2023, 62, e202310639;
- 18bV. J. Mayerhofer, M. Lippolis, C. J. Teskey, Angew. Chem. Int. Ed. 2024, 63, e202314870;
- 18cX. Ma, S. B. Herzon, Chem. Sci. 2015, 6, 6250–6255.
- 19For selected reviews on the applications of α-allenol, see:
- 19aA. Hoffmann-Röder, N. Krause, Angew. Chem. Int. Ed. 2004, 43, 1196–1216;
- 19bP. Rivera-Fuentes, F. Diederich, Angew. Chem. Int. Ed. 2012, 51, 2818–2828;
- 19cS. Yu, S. Ma, Angew. Chem. Int. Ed. 2012, 51, 3074–3112;
- 19dX. Fan, Y. He, X. Zhang, Chem. Rec. 2016, 16, 1635–1646;
- 19eJ. M. Alonso, P. Almendros, Chem. Rev. 2021, 121, 4193–4252;
- 19fJ. M. Alonso, P. Almendros, Adv. Synth. Catal. 2023, 365, 1332–1384.
- 20
- 20aD. F. Horler, J. Chem. Soc. C 1970, 859–862;
- 20bH. Carpio, G. F. Cooper, J. A. Edwards, J. H. Fried, G. L. Garay, A. Guzman, J. A. Mendez, J. M. Muchowski, A. P. Roszkowski, A. R. Van Horn, D. Wren, Prostaglandins 1987, 33, 169–180;
- 20cJ. R. Kern, D. M. Lokensgard, L. V. Manes, M. Matsuo, K. Nakamura, J. Chromatogr. 1988, 450, 233–240;
- 20dF. Cai, X. Pu, X. Qi, V. Lynch, A. Radha, J. M. Ready, J. Am. Chem. Soc. 2011, 133, 18066–18069;
- 20eJ.-T. Ye, W. Fan, S.-M. Ma, Chem. Eur. J. 2013, 19, 716–720;
- 20fX. Tang, X. Huang, T. Cao, Y. Han, X. Jiang, W. Lin, Y. Tang, J. Zhang, Q. Yu, C.-L. Fu, S.-M. Ma, Org. Chem. Front. 2015, 2, 688–691.
- 21
- 21aL. Wang, C. Lin, Q. Chong, Z. Zhang, F.-K. Meng, Nat. Commun. 2023, 14, 4825;
- 21bX. Guo, Z. Shi, F. Zhang, Z.-B. Wang, ACS Catal. 2023, 13, 3170–3178;
- 21cF.-H. Zhang, X.-C. Guo, X.-R. Zeng, Z.-B. Wang, Angew. Chem. Int. Ed. 2022, 61, e202117114;
- 21dH. Jiang, X. He, X. Jiang, W. Zhao, L.-Q. Lu, Y. Cheng, W.-J. Xiao, J. Am. Chem. Soc. 2023, 145, 6944–6952;
- 21eM. Shaw, V. W. Shurtleff, J. A. Terrett, J. D. Cuthbertson, D. W. C. MacMillan, Science 2016, 352, 1304–1308;
- 21fH. Hu, Z. Shi, X. Guo, F. Zhang, Z.-B. Wang, J. Am. Chem. Soc. 2024, 146, 5316–5323.
- 22
- 22aJ.-M. Tian, A.-F. Wang, J.-S. Yang, X.-J. Zhao, Y.-Q. Tu, S.-Y. Zhang, Z.-M. Chen, Angew. Chem. Int. Ed. 2019, 58, 11023;
- 22bX.-J. Zhao, Z.-H. Li, T.-M. Ding, J.-M. Tian, Y.-Q. Tu, A.-F. Wang, Y.-Y. Xie, Angew. Chem. Int. Ed. 2021, 60, 7061–7065;
- 22cJ.-S. Yang, K. Lu, C.-X. Li, Z.-H. Zhao, F.-M. Zhang, X.-M. Zhang, Y.-Q. Tu, J. Am. Chem. Soc. 2023, 145, 22122–22134;
- 22dY. Zhang, Y. Gu, K. Lu, Y. Wang, A. Wang, S. Wang, S. Wei, F. Zhang, X. Zhang, A. Ma, J. Peng, Y.-Q. Tu, CCS Chem. 2024, doi: 10.31635/ccschem.024.202404027;
- 22eS. Wang, S. Wei, Y. Zhang, X. Zhang, S. Zhang, K. Dai, Y. Tu, K. Lu, T. Ding, Nat. Commun. 2024, 15, 4591;
- 22fS. Wei, Z. Li, S. Wang, H. Chen, X. Wang, Y. Gu, Y. Zhang, H. Wang, T. Ding, S. Zhang, Y. Tu, J. Am. Chem. Soc. 2024, 146, 18841–18847.
- 23For selected reviews of Photoredox/Cr dual-catalytic manifolds, see:
- 23aZ. Shen, J. Tu, Eur. J. Org. Chem. 2024, e202401016;
- 23bA. Gualandi, F. Calogero, E. Pinosa, D. Corbisiero, P. G. Cozzi, Synthesis 2023, 55, 3737–3758;
- 23cY. Katayama, H. Mitsunuma, M. Kanai, Synthesis 2022, 54, 1684–1694;
- 23dH.-M. Huang, P. Bellotti, F. Glorius, Acc. Chem. Res. 2022, 55, 1135–1147.
- 24
- 24aJ. L. Schwarz, F. Schäfers, A. Tlahuext-Aca, L. Lückemeier, F. Glorius, J. Am. Chem. Soc. 2018, 140, 12705–12709;
- 24bJ. L. Schwarz, R. Kleinmans, T. O. Paulisch, F. Glorius, J. Am. Chem. Soc. 2020, 142, 2168–2174;
- 24cJ. L. Schwarz, H.-M. Huang, T. O. Paulisch, F. Glorius, ACS Catal. 2020, 10, 1621–1627;
- 24dH.-M. Huang, P. Bellotti, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2021, 60, 2464–2471;
- 24eS. Dutta, J. E. Erchinger, F. Schäfers, A. Das, C. G. Daniliuc, F. Glorius, Angew. Chem. Int. Ed. 2022, 61, e202212136.
- 25
- 25aS. Tanabe, H. Mitsunuma, M. Kanai, J. Am. Chem. Soc. 2020, 142, 12374–12381;
- 25bY. Hirao, Y. Katayama, H. Mitsunuma, M. Kanai, Org. Lett. 2020, 22, 8584–8588;
- 25cH. Mitsunuma, S. Tanabe, H. Fuse, K. Ohkubo, M. Kanai, Chem. Sci. 2019, 10, 3459–3465.
- 26
- 26aF. Calogero, S. Potenti, G. Magagnano, G. Mosca, A. Gualandi, M. Marchini, P. Ceroni, P. G. Cozzi, Eur. J. Org. Chem. 2022, e202200350;
- 26bF. Calogero, G. Magagnano, S. Potenti, A. Gualandi, A. Fermi, P. Ceroni, P. G. Cozzi, Adv. Synth. Catal. 2022, 364, 3410–3419;
- 26cF. Calogero, S. Potenti, E. Bassan, A. Fermi, A. Gualandi, J. Monaldi, B. Dereli, B. Maity, L. Cavallo, P. Ceroni, P. G. Cozzi, Angew. Chem. Int. Ed. 2022, 61, e202114981.
- 27
- 27aF.-H. Zhang, X.-C. Guo, X.-R. Zeng, Z.-B. Wang, Nat. Commun. 2022, 13, 5036–5036;
- 27bY.-F. Lv, G. Liu, Z. Shi, Z.-B. Wang, Angew. Chem. Int. Ed. 2024, 63, e202406109;
- 27cH.-G. Shen, L. Yang, M. Xu, Z. Shi, K. Gao, X. Xia, Z.-B. Wang, Angew. Chem. Int. Ed. 2024, e202413198.
- 28
- 28aS. W. M. Crossley, F. Barabé, R. A. Shenvi, J. Am. Chem. Soc. 2014, 136, 16788–16791;
- 28bN. Li, Y. Gui, M. Chu, M. You, X. Qiu, H. Liu, S. Wang, M. Deng, B. Ji, Org. Lett. 2021, 23, 8460–8464.
- 29
- 29aD. Guillaneux, S.-H. Zhao, O. Samuel, D. Rainford, H. B. Kaga, J. Am. Chem. Soc. 1994, 116, 9430–9439;
- 29bM. Gómez-Gallego, M. A. Sierra, Chem. Rev. 2011, 111, 4857–4963;
- 29cS. Ishida, H. Suzuki, S. Uchida, E. Yamaguchi, A. Itoh, Eur. J. Org. Chem. 2019, 2019, 7483–7487.
- 30For the details, please see the Supporting Information.
- 31
- 31aP. Z. Wang, J. R. Chen, W. J. Xiao, Org. Biomol. Chem. 2019, 17, 6936–6951;
- 31bM. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras, S. Bernhard, Chem. Mater. 2005, 17, 5712–5719;
- 31cX. Ye, R. Kumer, M. Sankar, K. M. Kadish, Inorg. Chem. 2018, 57, 1490–1503;
- 31dK. Izutsu, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009.
- 32
- 32aF. Liu, R. S. Paton, S. Kim, Y. Liang, K. N. Houk, J. Am. Chem. Soc. 2013, 135, 15642–15649;
- 32bT. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592;
- 32cT. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539–555;
- 32dT. Lu, F. Chen, J. Mol. Graphics Modell. 2012, 38, 314–323.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.