Photocatalyzed Azidofunctionalization of Alkenes via Radical-Polar Crossover
Pierre Palamini
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorAlexandre A. Schoepfer
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jerome Waser
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorPierre Palamini
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorAlexandre A. Schoepfer
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorCorresponding Author
Prof. Dr. Jerome Waser
Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorAbstract
The azidofunctionalization of alkenes under mild conditions using commercially available starting materials and easily accessible reagents is reported based on a radical-polar crossover strategy. A broad range of alkenes, including vinyl arenes, enamides, enol ethers, vinyl sulfides, and dehydroamino esters, were regioselectively functionalized with an azide and nucleophiles such as azoles, carboxylic acids, alcohols, phosphoric acids, oximes, and phenols. The method led to a more efficient synthesis of 1,2-azidofunctionalized pharmaceutical intermediates when compared to previous approaches, resulting in both reduction of step count and increase in overall yield. The scope and limitations of these transformations were further investigated through a standard unbiased selection of 15 substrate combinations out of 1,175,658 possible using a clustering technique.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420455-sup-0001-misc_information.pdf15.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1H. Tanimoto, K. Kakiuchi, Nat. Prod. Commun. 2013, 8, 1021–1034.
- 2M. Schock, S. Bräse, Molecules 2020, 25, 1009.
- 3E. M. Sletten, C. R. Bertozzi, Angew. Chem. Int. Ed. 2009, 48, 6974–6998.
- 4S. Bräse, C. Gil, K. Knepper, V. Zimmermann, Angew. Chem. Int. Ed. 2005, 44, 5188–5240.
- 5P. Sivaguru, Y. Ning, X. Bi, Chem. Rev. 2021, 121, 4253–4307.
- 6
- 6aX. Bao, J. Li, W. Jiang, C. Huo, Synthesis 2019, 51, 4507–4530;
- 6bH. Jiang, A. Studer, Chem. Soc. Rev. 2020, 49, 1790–1811;
- 6cZ. Wu, M. Hu, J. Li, W. Wu, H. Jiang, Org. Biomol. Chem. 2021, 19, 3036–3054;
- 6dL. M. Wickham, R. Giri, Acc. Chem. Res. 2021, 54, 3415–3437;
- 6eP. Gao, Y.-J. Niu, F. Yang, L.-N. Guo, X.-H. Duan, Chem. Commun. 2022, 58, 730–746;
- 6fY. Kwon, Q. Wang, Chem. Asian J. 2022, 17, e202200215;
- 6gJ. Huang, Z.-M. Chen, Chem. Eur. J. 2022, 28, e202201519;
- 6hT. Kang, O. Apolinar, K. M. Engle, Synthesis 2023, 56, 1–15;
- 6iZ.-Y. Wang, J. Li, T. Li, X. Jiang, H. Li, Z. Zhang, S. Xu, Eur. J. Org. Chem. 2024, 27, e202400291.
- 7
- 7aLiu, H. Liu, X. Liu, Z. Chen, Catalysts 2023, 13, 1056;
- 7bS. Gupta, A. Kundu, S. Ghosh, A. Chakraborty, A. Hajra, Green Chem. 2023, 25, 8459–8493;
- 7cA. Kommoju, K. Snehita, K. Sowjanya, S. B. Mukkamala, K. Padala, Chem. Commun. 2024, 60, 8946–8977;
- 7dZ.-L. Zhou, Y. Zhang, P.-Z. Cui, J.-H. Li, Chem. Eur. J. 2024, e202402458.
- 8M. Shee, N. D. P. Singh, Chem. Soc. Rev. 2022, 51, 2255–2312.
- 9
- 9aL. Xu, X.-Q. Mou, Z.-M. Chen, S.-H. Wang, Chem. Commun. 2014, 50, 10676–10679;
- 9bD. Wang, F. Wang, P. Chen, Z. Lin, G. Liu, Angew. Chem. Int. Ed. 2017, 56, 2054–2058;
- 9cY.-T. Zheng, H.-C. Xu, Angew. Chem. Int. Ed. 2024, 63, e202313273.
- 10
- 10aA. Bunescu, Y. Abdelhamid, M. J. Gaunt, Nature 2021, 598, 597–603;
- 10bX. Wu, X. Zhang, X. Ji, G.-J. Deng, H. Huang, Org. Lett. 2023, 25, 5162–5167;
- 10cY. Cai, S. Chatterjee, T. Ritter, J. Am. Chem. Soc. 2023, 145, 13542–13548.
- 11
- 11aH. Xiong, N. Ramkumar, M.-F. Chiou, W. Jian, Y. Li, J.-H. Su, X. Zhang, H. Bao, Nat. Commun. 2019, 10, 122;
- 11bR. Wei, H. Xiong, C. Ye, Y. Li, H. Bao, Org. Lett. 2020, 22, 3195–3199;
- 11cP. Palamini, E. M. D. Allouche, J. Waser, Org. Lett. 2023, 25, 6791–6795.
- 12J. Borrel, J. Waser, Chem. Sci. 2023, 14, 9452–9460.
- 13S. Makai, E. Falk, B. Morandi, J. Am. Chem. Soc. 2020, 142, 21548–21555.
- 14
- 14aW. Yan, M. Lin, R. D. Little, C.-C. Zeng, Tetrahedron 2017, 73, 764–770;
- 14bP. Zhou, L. Lin, L. Chen, X. Zhong, X. Liu, X. Feng, J. Am. Chem. Soc. 2017, 139, 13414–13419;
- 14cD. S. Rao, T. R. Reddy, A. Gurawa, M. Kumar, S. Kashyap, Org. Lett. 2019, 21, 9990–9994;
- 14dL. Liao, X. Xu, J. Ji, X. Zhao, J. Am. Chem. Soc. 2022, 144, 16490–16501.
- 15F. Cong, Y. Wei, P. Tang, Chem. Commun. 2018, 54, 4473–4476.
- 16
- 16aX. Sun, X. Li, S. Song, Y. Zhu, Y.-F. Liang, N. Jiao, J. Am. Chem. Soc. 2015, 137, 6059–6066;
- 16bP. K. Prasad, R. N. Reddi, A. Sudalai, Chem. Commun. 2015, 51, 10276–10279;
- 16cB. Yang, Z. Lu, ACS Catal. 2017, 7, 8362–8365.
- 17
- 17aF. Chen, Y.-T. Tang, X.-R. Li, Y.-Y. Duan, C.-X. Chen, Y. Zheng, Adv. Synth. Catal. 2021, 363, 5079–5084;
- 17bA. Gurawa, M. Kumar, S. Kashyap, ACS Omega 2021, 6, 26623–26639:;
- 17cE. R. Lopat'eva, I. B. Krylov, S. A. Paveliev, D. A. Emtsov, V. A. Kostyagina, A. A. Korlyukov, A. O. Terent'ev, J. Org. Chem. 2023, 88, 13225–13235.
- 18Selected examples:
- 18aA. Hassner, R. Fibiger, D. Andisik, J. Org. Chem. 1984, 49, 4237–4244;
- 18bG. W. Breton, K. A. Daus, P. J. Kropp, J. Org. Chem. 1992, 57, 6646–6649;
- 18cJ. Waser, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2005, 127, 8294–8295;
- 18dJ. Waser, B. Gaspar, H. Nambu, E. M. Carreira, J. Am. Chem. Soc. 2006, 128, 11693–11712;
- 18eH. Li, S.-J. Shen, C.-L. Zhu, H. Xu, J. Am. Chem. Soc. 2019, 141, 9415–9421;
- 18fX. Li, P. Chen, G. Liu, Sci. China Chem. 2019, 62, 1537–1541;
- 18gH. Lindner, W. M. Amberg, E. M. Carreira, J. Am. Chem. Soc. 2023, 145, 22347–22353.
- 19
- 19aR. J. Wiles, G. A. Molander, Isr. J. Chem. 2020, 60, 281–293;
- 19bH. Yao, W. Hu, W. Zhang, Molecules 2021, 26, 105;
- 19cS. Sharma, J. Singh, A. Sharma, Adv. Synth. Catal. 2021, 363, 3146–3169;
- 19dS. Kumar Nanda, Adv. Synth. Catal. 2023, 365, 834–853;
- 19eZ. Zhu, Y. Zhang, Z. Li, C. Shu, Chem Catalysis 2024, 4, 100945.
- 20N. Papaionnou, S. J. Fink, J. M. Travins, J. M. Ellard, A. Rae, (Takeda Pharmaceutical Company Limited), WO 2024/059186 A1, 2024.
- 21G. Beaton, F. Tucci, S. Ravula, S. J. Lee, C. Shah, (Epigen Biosciences, Inc.), WO 2022/256075 A1, 2022.
- 22J. D. Burch, K. Lau, J. J. Barker, F. Brookfield, Y. Chen, Y. Chen, C. Eigenbrot, C. Ellebrandt, M. H. A. Ismaili, A. Johnson, D. Kordt, C. H. MacKinnon, P. A. McEwan, D. F. Ortwine, D. B. Stein, X. Wang, D. Winkler, P.-W. Yuen, Y. Zhang, A. A. Zarrin, Z. Pei, J. Med. Chem. 2014, 57, 5714–5727.
- 23
- 23aH. Yin, T. Wang, N. Jiao, Org. Lett. 2014, 16, 2302–2305;
- 23bR. Zhu, S. L. Buchwald, J. Am. Chem. Soc. 2015, 137, 8069–8077;
- 23cP. Zhang, W. Sun, G. Li, L. Hong, R. Wang, Chem. Commun. 2015, 51, 12293–12296;
- 23dS. Alazet, F. Le Vaillant, S. Nicolai, T. Courant, J. Waser, Chem. Eur. J. 2017, 23, 9501–9504.
- 24
- 24aM.-Z. Lu, C.-Q. Wang, T.-P. Loh, Org. Lett. 2015, 17, 6110–6113;
- 24bS. Bertho, R. Rey-Rodriguez, C. Colas, P. Retailleau, I. Gillaizeau, Chem. Eur. J. 2017, 23, 17674–17677;
- 24cD. Wu, S.-S. Cui, Y. Lin, L. Li, W. Yu, J. Org. Chem. 2019, 84, 10978–10989.
- 25G. Fumagalli, P. T. G. Rabet, S. Boyd, M. F. Greaney, Angew. Chem. Int. Ed. 2015, 54, 11481–11484.
- 26C.-X. Xia, Z. Li, R. Ye, Z.-J. Wu, Y. Ren, K. Wang, L.-G. Meng, Org. Lett. 2024, 26, 3530–3535.
- 27D. S. Rao, T. R. Reddy, K. Babachary, S. Kashyap, Org. Biomol. Chem. 2016, 14, 7529–7543.
- 28
- 28aJ. A. Hueffel, T. Sperger, I. Funes-Ardoiz, J. S. Ward, K. Rissanen, F. Schoenebeck, Science 2021, 374, 1134–1140;
- 28bT. M. Karl, S. Bouayad-Gervais, J. A. Hueffel, T. Sperger, S. Wellig, S. J. Kaldas, U. Dabranskaya, J. S. Ward, K. Rissanen, G. J. Tizzard, F. Schoenebeck, J. Am. Chem. Soc. 2023, 145, 15414–15424;
- 28cH. R. Kelly, S. Sreekumar, V. Manee, A. E. Cuomo, T. R. Newhouse, V. S. Batista, F. Buono, ACS Catal. 2024, 14, 5027–5038.
- 29I. N.-M. Leibler, S. S. Gandhi, M. A. Tekle-Smith, A. G. Doyle, J. Am. Chem. Soc. 2023, 145, 9928–9950.
- 30
- 30aS. K. Kariofillis, S. Jiang, A. M. Żurański, S. S. Gandhi, J. I. Martinez Alvarado, A. G. Doyle, J. Am. Chem. Soc. 2022, 144, 1045–1055;
- 30bB. C. Haas, A. E. Goetz, A. Bahamonde, J. C. McWilliams, M. S. Sigman, Proc. Nat. Acad. Sci. 2022, 119, e2118451119;
- 30cT. Schnitzer, M. Schnurr, A. F. Zahrt, N. Sakhaee, S. E. Denmark, H. Wennemers, ACS Cent. Sci. 2024, 10, 367–373;
- 30dD. Rana, P. M. Pflüger, N. P. Hölter, G. Tan, F. Glorius, ACS Cent. Sci. 2024, 10, 899–906.
- 31
- 31aT. Tang, A. Hazra, D. S. Min, W. L. Williams, E. Jones, A. G. Doyle, M. S. Sigman, J. Am. Chem. Soc. 2023, 145, 8689–8699;
- 31bL. van Dijk, B. C. Haas, N.-K. Lim, K. Clagg, J. J. Dotson, S. M. Treacy, K. A. Piechowicz, V. A. Roytman, H. Zhang, F. D. Toste, S. J. Miler, F. Gosselin, M. S. Sigman, J. Am. Chem. Soc. 2023, 145, 20959–20967;
- 31cW. L. Williams, N. E. Gutiérrez-Valencia, A. G. Doyle, J. Am. Chem. Soc. 2023, 145, 24175–24183;
- 31dM. H. Samha, L. J. Karas, D. B. Vogt, E. C. Odogwu, J. Elward, J. M. Crawford, J. E. Steves, M. S. Sigman, Sci. Adv. 2024, 10, eadn3478.
- 32
- 32aS. Alazet, J. Preindl, R. Simonet-Davin, S. Nicolai, A. Nanchen, T. Meyer, J. Waser, J. Org. Chem. 2018, 83, 12334–12356;
- 32bR. Simonet-Davin, J. Waser, Synthesis 2022, 55, 1652–1661.
- 33Deposition numbers 2381423 (for 3 e), 2360525 (for 3 ac), 2381423 (for 3 ai’) and 2385437 (for 10 g) contain the supplementary crystallographic data for this paper. These data are provided free of charge from the Cambridge Crystallographic Data Centre.
- 34
- 34aR. F. X. Klein, V. Horák, G. A. S. Baker, Collect. Czech. Chem. Commun. 1993, 58, 1631–1635;
- 34bF. Wu, N. Kaur, N.-E. Alom, W. Li, J. Am. Chem. Soc. Au. 2021, 1, 734–741.
- 35V. Smyrnov, B. Muriel, J. Waser, Org. Lett. 2021, 23, 5435–5439.
- 36X.-G. Yang, F.-H. Du, J.-J. Li, C. Zhang, Chem. Eur. J. 2022, 28, e202200272.
- 37D. Cao, S. Xia, L. Li, H. Zeng, C.-J. Li, Org. Lett. 2024, 26, 6418–6423.
- 38R. Ma, S. Fang, H. Jiang, W. Wu, Org. Lett. 2024, 26, 2354–2358.
- 39F. Zhang, W. Zhang, Y. Zhang, D. P. Curran, G. Liu, J. Org. Chem. 2009, 74, 2594–2597.
- 40N. Sabat, F. Soualmia, P. Retailleau, A. Benjdia, O. Berteau, X. Guinchard, Org. Lett. 2020, 22, 4344–4349.
- 41J. Xiao, Q. Li, R. Shen, S. Shimada, L.-B. Han, Adv. Synth. Catal. 2019, 361, 5715–5720.
- 42M. Rivas, S. Debnath, S. Giri, Y. M. Noffel, X. Sun, V. Gevorgyan, J. Am. Chem. Soc. 2023, 145, 19265–19273.
- 43T. Rossolini, B. Ferko, D. J. Dixon, Org. Lett. 2019, 21, 6668–6673.
- 44I. Suzuki, M. Yasuda, A. Baba, Chem. Commun. 2013, 49, 11620–11622.
- 45P. G. Gassman, S. J. Burns, K. B. Pfister, J. Org. Chem. 1993, 58, 1449–1457.
- 46G. Guerra Faura, T. Nguyen, S. France, J. Org. Chem. 2021, 86, 10088–10104.
- 47Y. Hu, Y. Xie, Z. Shen, H. Huang, Angew. Chem. Int. Ed. 2017, 56, 2473–2477.
- 48J. Liu, H.-W. Jiang, X.-Q. Hu, P.-F. Xu, Org. Lett. 2024, 26, 3661–3666.
- 49R. Sun, X. Yang, X. Chen, C. Zhang, X. Zhao, X. Wang, X. Zheng, M. Yuan, H. Fu, R. Li, H. Chen, Org. Lett. 2018, 20, 6755–6759.
- 50Y. Liu, H. Li, S. Chiba, Org. Lett. 2021, 23, 427–432.
- 51A. Gonzalez-de-Castro, J. Xiao, J. Am. Chem. Soc. 2015, 137, 8206–8218.
- 52K. Tanaka, M. Katsurada, F. Ohno, Y. Shiga, M. Oda, M. Miyagi, J. Takehara, K. Okano, J. Org. Chem. 2000, 65, 432–437.
- 53P. Morán-Poladura, E. Rubio, J. M. González, Angew. Chem. Int. Ed. 2015, 54, 3052–3055.
- 54G. Dilauro, C. S. Azzollini, P. Vitale, A. Salomone, F. M. Perna, V. Capriati, Angew. Chem. Int. Ed. 2021, 60, 10632–10636.
- 55D. M. Carminati, J. Decaens, S. Couve-Bonnaire, P. Jubault, R. Fasan, Angew. Chem. Int. Ed. 2021, 60, 7072–7076.
- 56D. Lv, Q. Sun, H. Zhou, L. Ge, Y. Qu, T. Li, X. Ma, Y. Li, H. Bao, Angew. Chem. Int. Ed. 2021, 60, 12455–12460.
- 57S. Ida, M. Ouchi, M. Sawamoto, J. Polym. Sci. Part Polym. Chem. 2010, 48, 1449–1455.
- 58Y. Kim, H. K. Pak, Y. H. Rhee, J. Park, Chem. Commun. 2016, 52, 6549–6552.
- 59D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.
- 60D. Rogers, M. Hahn, J. Chem. Inf. Model. 2010, 50, 742–754.
- 61G. Landrum, P. Tosco, B. Kelley, Ric, D. Cosgrove, sriniker, gedeck, R. Vianello, NadineSchneider, E. Kawashima, D. N, G. Jones, A. Dalke, B. Cole, M. Swain, S. Turk, AlexanderSavelyev, A. Vaucher, M. Wójcikowski, I. Take, D. Probst, K. Ujihara, V. F. Scalfani, guillaume godin, J. Lehtivarjo, A. Pahl, R. Walker, F. Berenger, jasondbiggs, strets123 2023, DOI 10.5281/zenodo.8413907.
- 62L. McInnes, J. Healy, N. Saul, L. Großberger, J. Open Source Softw. 2018, 3, 861.
10.21105/joss.00861 Google Scholar
- 63F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, É. Duchesnay, J. Mach. Learn. Res. 2011, 12, 2825–2830.
- 64C. L. Zhong, B. Y. Tang, P. Yin, Y. Chen, L. He, J. Org. Chem. 2012, 77, 4271–4277.
- 65M. J. Moore, S. Qu, C. Tan, Y. Cai, Y. Mogi, D. Jamin Keith, D. L. Boger, J. Am. Chem. Soc. 2020, 142, 16039–16050.
- 66V. Pozhydaiev, M. Vayer, C. Fave, J. Moran, D. Lebœuf, Angew. Chem. Int. Ed. 2023, 62, e202215257.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.