High-Rate Lithium-Ion Capacitor Diode Towards Multifrequency Ion/Electron-Coupling Logic Operations
Corresponding Author
Dr. Hongyun Ma
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Kai Sun
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYunong Cai
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorFengfeng Li
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorLingxiao Ma
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYifeng Qi
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Hongwei Sheng
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Liang Wu
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070 P. R. China
Search for more papers by this authorDr. Kai Wang
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorProf. Jun Wang
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Yujun Fu
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorProf. Yang Chai
Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Lan
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorCorresponding Author
Dr. Hongyun Ma
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Kai Sun
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYunong Cai
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorFengfeng Li
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorLingxiao Ma
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorYifeng Qi
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Hongwei Sheng
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Liang Wu
School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou, 730070 P. R. China
Search for more papers by this authorDr. Kai Wang
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorProf. Jun Wang
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorDr. Yujun Fu
School of Materials and Energy, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorProf. Yang Chai
Department of Applied Physics, The Hong Kong Polytechnic University Kowloon, Hong Kong, P. R. China
Search for more papers by this authorCorresponding Author
Prof. Wei Lan
School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000 P. R. China
Search for more papers by this authorAbstract
Ion/electron-coupling logic operation is recognized as the most promising approach to achieving in-depth brain-inspired computing, but the lack of high-performance ion/electron-coupling devices with high operating frequencies much restricts the fast development of this field. Accordingly, we herein report an orthorhombic niobium pentoxide (T-Nb2O5) based lithium-ion capacitor diode (CAPode) that possesses thoroughly improved performances to achieve multifrequency ion/electron-coupling logic operations. Specifically, benefiting from the unique crystal structure and fast ion-transport topology of T-Nb2O5, the constructed CAPode exhibits a high response frequency of up to 122 Hz, over three orders of magnitude higher than those of the state-of-the-art CAPodes. Meanwhile, the T-Nb2O5 based CAPode delivers a record-high rectification ratio of 108, a high specific capacity of 390 C g−1, a wide voltage window of −1.5–1.5 V, and a superior cycling stability over 2000 cycles. Combining these performance advantages, the T-Nb2O5 based CAPode is demonstrated to be fully competent in typical AND and OR logic gates over a wide frequency range of 1–100 Hz, validating great potential in the burgeoning field of multifrequency ion/electron-coupling logic operations.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420404-sup-0001-misc_information.pdf3.7 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1E. Zhang, N. Fulik, G. P. Hao, H. Y. Zhang, K. Kaneko, L. Borchardt, E. Brunner, S. Kaskel, Angew. Chem. Int. Ed. 2019, 58, 13060.
- 2H. Zhou, P. Li, E. Zhang, J. Kunigkeit, X. Zhou, K. Haase, M. Rita Ortega Vega, S. Wang, X. Xu, J. Grothe, S. C. B. Mannsfeld, E. Brunner, K. Kaneko, S. Kaskel, Angew. Chem. Int. Ed. 2023, 62, e202305397.
- 3P. Tang, P. Jing, W. Tan, Q. Dou, X. Yan, Mater. Today 2024, 74, 187.
- 4H. Ma, L. Ma, H. Bi, W. Lan, Chin. Phys. B 2024, 33, 028201.
- 5H. Ma, J. Liang, J. Qiu, L. Jiang, L. Ma, H. Sheng, M. Shao, Q. Wang, F. Li, Y. Fu, J. Wang, E. Xie, Y. Chai, W. Lan, Adv. Mater. 2023, 35, 2301218.
- 6C. H. Yang, Z. G. Suo, Nat. Rev. Mater. 2018, 3, 125.
- 7H. Yuk, B. Y. Lu, X. H. Zhao, Chem. Soc. Rev. 2019, 48, 1642.
- 8P. Robin, N. Kavokine, L. Bocquet, Science 2021, 373, 687.
- 9Y. Q. Hou, X. Hou, Science 2021, 373, 628.
- 10M. Cucchi, C. Gruener, L. Petrauskas, P. Steiner, H. Tseng, A. Fischer, B. Penkovsky, C. Matthus, P. Birkholz, H. Kleemann, K. Leo, Sci. Adv. 2021, 7, eabh0693.
- 11P. Tang, P. Jing, Z. Luo, K. Liu, X. Zhao, Y. Lao, Q. Yao, C. Zhong, Q. Fu, J. Zhu, Y. Liu, Q. Dou, X. Yan, Natl. Sci. Rev. 2024, 11, nwae322.
- 12J. Z. Feng, Y. Wang, Y. T. Xu, H. Y. Ma, G. W. Wang, P. J. Ma, Y. Tang, X. B. Yan, Adv. Mater. 2021, 33, 2100887.
- 13P. Tang, W. Tan, F. Li, S. Xue, Y. Ma, P. Jing, Y. Liu, J. Zhu, X. Yan, Adv. Mater. 2023, 35, 2209186.
- 14Y. Ma, P. Tang, Z. Miao, W. Tan, Q. Wang, Y. Chen, G. Li, Q. Dou, X. Yan, L. Shui, J. Energy Chem. 2024, 93, 429.
- 15C. Gellrich, L. Shupletsov, P. Galek, A. Bahrawy, J. Grothe, S. Kaskel, Adv. Mater. 2024, 36, 2401336.
- 16A. Bahrawy, P. Galek, C. Gellrich, J. Grothe, S. Kaskel, Adv. Funct. Mater. 2024, 34, 2405640.
- 17V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruna, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518.
- 18L. Qin, Y. Liu, S. Xu, S. Wang, X. Sun, S. Zhu, L. Hou, C. Yuan, Small Methods 2020, 4, 2000630.
- 19J. Liao, W. Ni, C. Wang, J. Ma, Chem. Eng. J. 2020, 391, 123489.
- 20I. Nowak, M. Ziolek, Chem. Rev. 1999, 99, 3603.
- 21L. Kong, X. Cao, J. Wang, W. Qiao, L. Ling, D. Long, J. Power Sources 2016, 309, 42.
- 22D. Chen, J.-H. Wang, T.-F. Chou, B. Zhao, M. A. El-Sayed, M. Liu, J. Am. Chem. Soc. 2017, 139, 7071.
- 23T.-F. Yi, H. M. K. Sari, X. Li, F. Wang, Y.-R. Zhu, J. Hu, J. Zhang, X. Li, Nano Energy 2021, 85, 105955.
- 24H. Han, Q. Jacquet, Z. Jiang, F. N. Sayed, J.-C. Jeon, A. Sharma, A. M. Schankler, A. Kakekhani, H. L. Meyerheim, J. Park, S. Y. Nam, K. J. Griffith, L. Simonelli, A. M. Rappe, C. P. Grey, S. S. P. Parkin, Nat. Mater. 2023, 22, 1128.
- 25K. J. Griffith, A. C. Forse, J. M. Griffin, C. P. Grey, J. Am. Chem. Soc. 2016, 138, 8888.
- 26X. Wang, C. Yan, J. Yan, A. Sumboja, P. S. Lee, Nano Energy 2015, 11, 765.
- 27E. Lim, C. Jo, H. Kim, M.-H. Kim, Y. Mun, J. Chun, Y. Ye, J. Hwang, K.-S. Ha, K. C. Roh, K. Kang, S. Yoon, J. Lee, ACS Nano 2015, 9, 7497.
- 28L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, D. Long, ACS Nano 2015, 9, 11200.
- 29Q. Deng, Y. Fu, C. Zhu, Y. Yu, Small 2019, 15, 1804884.
- 30D. L. Rousseau, R. P. Bauman, S. P. S. Porto, J. Raman Spectrosc. 1981, 10, 253.
- 31H. Zhang, Y. Wang, P. Liu, S. L. Chou, J. Z. Wang, H. Liu, G. Wang, H. Zhao, ACS Nano 2016, 10, 507.
- 32X. Ding, H. Huang, Q. Huang, B. Hu, X. Li, X. Ma, X. Xiong, J. Energy Chem. 2023, 77, 280.
- 33P. Tang, P. Gao, X. Cui, Z. Chen, Q. Fu, Z. Wang, Y. Mo, H. Liu, C. Xu, J. Liu, J. Yan, S. Passerini, Adv. Energy Mater. 2022, 12, 2102053.
- 34Y. Xu, J. Feng, H. Ma, J. Zhu, X. Zhang, J. Lang, S. Yang, X. Yan, Adv. Funct. Mater. 2022, 32, 2112223.
- 35J. Wang, J. Polleux, J. Lim, B. Dunn, J. Phys. Chem. C 2007, 111, 14925.
- 36H. Wang, C. Zhu, D. Chao, Q. Yan, H. J. Fan, Adv. Mater. 2017, 29, 1702093.
- 37B. Li, C. Wang, Z. Qin, C. Luan, C. Zhan, L. Li, R. Lv, W. Shen, Z.-H. Huang, Energy Mater. Devices 2023, 1, 9370012.
10.26599/EMD.2023.9370012 Google Scholar
- 38X. Pu, D. Zhao, C. Fu, Z. Chen, S. Cao, C. Wang, Y. Cao, Angew. Chem. Int. Ed. 2021, 60, 21310.
- 39H. Ma, H. Chen, M. Wu, F. Chi, F. Liu, J. Bai, H. Cheng, C. Li, L. Qu, Angew. Chem. Int. Ed. 2020, 59, 14541.
- 40H. Ma, H. Chen, Y. Hu, B. Yang, J. Feng, Y. Xu, Y. Sun, H. Cheng, C. Li, X. Yan, L. Qu, Energy Environ. Sci. 2022, 15, 1131.
- 41Z. Weng, F. Li, D.-W. Wang, L. Wen, H.-M. Cheng, Angew. Chem. Int. Ed. 2013, 52, 3722.
- 42H. Ma, H. Geng, B. Yao, M. Wu, C. Li, M. Zhang, F. Chi, L. Qu, ACS Nano 2019, 13, 9161.
- 43H. Ma, D. Kong, Y. Xu, X. Xie, Y. Tao, Z. Xiao, W. Lv, H. D. Jang, J. Huang, Q.-H. Yang, Small 2017, 13, 1701026.
- 44Y. Hu, M. Wu, F. Chi, G. Lai, P. Li, W. He, B. Lu, C. Weng, J. Lin, F. Chen, H. Cheng, F. Liu, L. Jiang, L. Qu, Nature 2023, 624, 74.
- 45M. Wu, F. Chi, H. Geng, H. Ma, M. Zhang, T. Gao, C. Li, L. Qu, Nat. Commun. 2019, 10, 2855.
- 46M. Zhang, X. Yu, H. Ma, W. Du, L. Qu, C. Li, G. Shi, Energy Environ. Sci. 2018, 11, 559.
- 47D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Nat. Nanotechnol. 2010, 5, 651.
- 48X. Feng, X. Zhao, L. Yang, M. Li, F. Qie, J. Guo, Y. Zhang, T. Li, W. Yuan, Y. Yan, Nat. Commun. 2018, 9, 3750.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.