Unlocking CO2 Activation With a Novel Ni−Hg−Ni Trinuclear Complex
Dr. Naser Rahimi
Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Writing - review & editing (equal)
Search for more papers by this authorDr. Christine Lepetit
LCC–CNRS, Université de Toulouse, CNRS, Toulouse, France
Contribution: Data curation (lead), Formal analysis (lead), Methodology (lead), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Davit Zargarian
Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorDr. Naser Rahimi
Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Methodology (equal), Writing - review & editing (equal)
Search for more papers by this authorDr. Christine Lepetit
LCC–CNRS, Université de Toulouse, CNRS, Toulouse, France
Contribution: Data curation (lead), Formal analysis (lead), Methodology (lead), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Prof. Davit Zargarian
Département de chimie, Université de Montréal, Montréal, Québec, Canada, H3C 3J7
Contribution: Conceptualization (lead), Formal analysis (lead), Funding acquisition (lead), Investigation (lead), Project administration (lead), Supervision (lead), Validation (lead), Writing - original draft (lead)
Search for more papers by this authorAbstract
Compounds featuring bonds between mercury and transition metals are of interest for their intriguing/ambiguous bonding and scarcely explored reactivities. We report herein the synthesis and reactivities of the new compound [(POCOP)Ni]2Hg, [Ni2Hg], featuring a trinuclear Ni−Hg−Ni core (POCOP=κP,κC,κP'-2,6-(i-Pr2PO)2C6H3). [Ni2Hg] reacts with CO2 to give the carbonate-bridged complex [Ni2CO3]. Bubbling CO gas through a solution of [Ni2CO3] gave its μ-CO2 analogue [Ni2CO2], which itself reacts with CO2 to give back [Ni2CO3], indicating that these two compounds interconvert reversibly. This implies that the formation of [Ni2CO3] from [Ni2Hg] and CO2 constitutes a reductive disproportionation of two molecules of CO2 into CO32− and CO. Tests showed that this process proceeds through three steps, an initial CO2 insertion to give [Ni2CO2], followed by another CO2 insertion to give the second intermediate [Ni2C2O4], and the latter's decarbonylation to give [Ni2CO3]. Although the putative second intermediate could not be isolated, we have shown that it likely features a μ-carbonyl-carbonate rather than a μ-oxalate moiety, because the latter complex is thermally stable to decarbonylation. Reduction of [Ni2CO3] with excess Na/Hg regenerates [Ni2Hg], establishing that the observed deoxygenation of CO2 in this system can, in principle, be catalytic in the presence of excess reductant.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420391-sup-0001-misc_information.pdf2.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1C.-I. Brändén, G. Schneider, Carbon Dioxide Fixation and Reduction in Biological and Model Systems, Oxford University Press, New York, 1994.
10.1093/oso/9780198547822.001.0001 Google Scholar
- 2S. W. Ragsdale, Crit. Rev. Biochem. Mol. Biol. 2004, 39, 165–195.
- 3For general reviews of metal-mediated CO2 chemistry, see for example:
- 3aX. L. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27–59;
- 3bW. Leitner, Coord. Chem. Rev. 1996, 153, 257–284.
- 4H. Arakawa, M. Aresta, J. N. Armor, M. A. Barteau, E. J. Beckman, A. T. Bell, J. E. Bercaw, C. Creutz, E. Dinjus, D. A. Dixon, K. Domen, D. L. DuBois, J. Eckert, E. Fujita, D. H. Gibson, W. A. Goddard, D. W. Goodman, J. Keller, G. J. Kubas, H. H. Kung, J. E. Lyons, L. E. Manzer, T. J. Marks, K. Morokuma, K. M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W. M. H. Sachtler, L. D. Schmidt, A. Sen, G. A. Somorjai, P. C. Stair, B. R. Stults, W. Tumas, Chem. Rev. 2001, 101, 953–996.
- 5A. Ueno, T. Sato, N. Todo, Y. Kotera, S. Takasaki, Chem. Lett. 1980, 1067–1070.
- 6
- 6aI. Castro-Rodriguez, K. Meyer, J. Am. Chem. Soc. 2005, 127, 11242–11243;
- 6bL. J. Procopio, P. J. Carroll, D. H. Berry, Organometallics 1993, 12, 3087–3093;
- 6cW. Ziegler, K. M. Nicholas, J. Organomet. Chem. 1992, 423, C35–C37;
- 6dJ. C. Bryan, S. J. Geib, A. L. Rheingold, J. M. Mayer, J. Am. Chem. Soc. 1987, 109, 2826–2828;
- 6eG. Fachinetti, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1979, 101, 1767–1775.
- 7
- 7aB. Bogdanovic, W. Leitner, C. Six, U. Wilczok, K. Wittmann, Angew. Chem. Int. Ed. Engl. 1997, 36, 502–504;
- 7bT. C. Eisenschmid, R. Eisenberg, Organometallics 1989, 8, 1822–1824.
- 8D. S. Laitar, P. Müller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127, 17196–17197.
- 9For a computational analysis of the CO2 deoxygenation reaction promoted by Cu(I)-boryl complexes see: H. Zhao, Z. Lin, T. B. Marder, J. Am. Chem. Soc. 2006, 128, 15637–15643.
- 10W. Lin, H. Frei, J. Am. Chem. Soc. 2005, 127, 1610–1611.
- 11R. Maidan, I. Willner, J. Am. Chem. Soc. 1986, 108, 8100–8101.
- 12
- 12aM. Beley, J.-P. Collin, R. Ruppert, J.-P. Sauvage, J. Am. Chem. Soc. 1986, 108, 7461–7467;
- 12bM. Hammouche, D. Lexa, M. Momenteau, J.-M. Savéant, J. Am. Chem. Soc. 1991, 113, 8455–8466;
- 12cE. Simòn-Manso, C. P. Kubiak, Organometallics 2005, 24, 96–102.
- 13W. Shin, S. H. Lee, J. W. Shin, S. P. Lee, Y. Kim, J. Am. Chem. Soc. 2003, 125, 14688–14689.
- 14
- 14aJ. Hao, B. Mougang-Soumé, B. Vabre, D. Zargarian, Angew. Chem. Int. Ed. 2014, 53, 3218–3222;
- 14bJ. Hao, B. Vabre, D. Zargarian, J. Am. Chem. Soc. 2015, 137, 15287–15298;
- 14cS. Lapointe, B. Vabre, D. Zargarian, Organometallics 2015, 34, 3520–3531;
- 14dB. Vabre, Y. Canac, C. Lepetit, C. Duhayon, R. Chauvin, D. Zargarian, Chem. Eur. J. 2015, 21, 17403–17414;
- 14eJ. Hao, B. Vabre, B. Mougang-Soumé, D. Zargarian, Chem. Eur. J. 2014, 20, 12544–12552.
- 15S. Chakraborty, J. Zhang, J. A. Krause, H. Guan, J. Am. Chem. Soc. 2010, 132, 8872–8873.
- 16M. Kreye, M. Freytag, P. G. Jones, P. G. Williard, W. H. Bernskoetter, M. D. Walter, Chem. Commun. 2015, 51, 2946–2949.
- 17
- 17aJ. Louie, J. E. Gibby, M. V. Farnworth, T. N. Tekavec, J. Am. Chem. Soc. 2002, 124, 15188–15189;
- 17bM. Takimoto, M. Mori, J. Am. Chem. Soc. 2002, 124, 10008–10009.
- 18C. H. Lee, D. S. Laitar, P. Mueller, J. P. Sadighi, J. Am. Chem. Soc. 2005, 127, 13802–13803.
- 19D. Zargarian, A. Castonguay, D. M. Spasyuk, in Topics in Organometallic Chemistry (Eds.: G. Koten, D. Milstein), Springer-Verlag, Berlin Heidelberg, 2013, 40, 131–173.
- 20
- 20aD. M. Grove, G. van Koten, P. Mul, R. Zoet, J. G. M. van der Linden, J. Legters, J. E. J. Schmitz, N. W. Murrall, A. J. Welch, Inorg. Chem. 1988, 27, 2466–2473;
- 20bD. M. Grove, G. van Koten, R. Zoet, J. Am. Chem. Soc. 1983, 105, 1379–1380;
- 20cV. Pandarus, D. Zargarian, Chem. Commun. 2007, 978–980;
- 20dV. Pandarus, D. Zargarian, Organometallics 2007, 26, 4321–4334;
- 20eA. Castonguay, A. L. Beauchamp, D. Zargarian, Organometallics 2008, 27, 5723–5732;
- 20fD. M. Spasyuk, D. Zargarian, A. van der Est, Organometallics 2009, 28, 6531–6540;
- 20gD. M. Spasyuk, S. I. Gorelsky, A. van der Est, D. Zargarian, Inorg. Chem. 2011, 50, 2661–2674;
- 20hB. Mougang-Soumé, F. Belanger-Gariépy, D. Zargarian, Organometallics 2014, 33, 5990–6002;
- 20iJ.-P. Cloutier, D. Zargarian, Organometallics 2018, 37, 1446–1455;
- 20jJ.-P. Cloutier, L. Rechignat, Y. Canac, D. Ess, D. Zargarian, Inorg. Chem. 2019, 58, 3861–3874.
- 21C. Yoo, Y. Lee, Angew. Chem. Int. Ed. 2017, 56, 9502–9506.
- 22S. Chakraborty, J. A. Krause, H. Guan, Organometallics 2009, 28, 582–586. This hydride species was identified on the basis of its characteristic 31P{1H} signal at 205.8 ppm.
- 23We speculate that the requirement for such large excess of reductant might be due to the biphasic nature of the reaction medium as well as the presence of protic impurities such as residual water in the solvent, or Et3NHBr generated during the formation of the precursor, etc. Nevertheless, it should be underlined here that even under suboptimal reaction conditions the species represented by the 31P{1H} signal at 180–181 ppm is the predominant reduction product (ca. 96 % of all integrated 31P{1H} signals).
- 24The formation of (POCOP)NiCl was deduced from the characteristic 31P{1H} NMR signal of this known derivative at ca. 184 ppm: V. Pandarus, D. Zargarian, Organometallics 2007, 26, 4321–4334.
- 25J. J. Schneider, U. Denninger, J. Hagena, C. Krüger, D. Bläser, R. Boese, Chem. Ber. Receuil. 1997, 130, 1433–1440.
- 26J. Gong, J. Huang, P. E. Fanwick, C. P. Kubiak, Angew. Chem. Int. Ed. 1990, 29, 396–397. It should be added that this compound is a spirocyclic Ni4Hg cluster featuring Ni(0)2(dπ*)→Hg(II)(pπ) interactions.
- 27
- 27aX. Lefèvre, D. M. Spasyuk, D. Zargarian, J. Organomet. Chem. 2011, 696, 864–870;
- 27bA. Salah, D. Zargarian, Dalton Trans. 2011, 40, 8977–8985;
- 27cA. Salah, C. Offenstein, D. Zargarian, Organometallics 2011, 30, 5352–5364;
- 27dC. Barthes, C. Lepetit, Y. Canac, C. Duhayon, D. Zargarian, R. Chauvin, Inorg. Chem. 2013, 52, 48–58;
- 27eB. Vabre, P. Petiot, R. Declercq, D. Zargarian, Organometallics 2014, 33, 5173–5184;
- 27fA. Salah, M. Corpet, N. u.-H. Khan, D. Zargarian, D. Spasyuk, New J. Chem. 2015, 39, 6649–6658.
- 28The “twist” angles in these complexes are the interplanar angles measured for the respective aryl and pyrrolyl rings of the two pincer moieties.
- 29T. J. Hebden, A. J. St. John, D. G. Gusev, W. Kaminsky, K. I. Goldberg, D. M. Heinekey, Angew. Chem. Int. Ed. 2011, 50, 1873–1876.
- 30S. Pfirrmann, C. Limberg, C. Herwig, R. Stößer, B. Ziemer, Angew. Chem. Int. Ed. 2009, 48, 3357–3361.
- 31Note that although JP-Hg values in the order of 300–400 Hz might seem to imply strong bonding interactions between these nuclei, this is not the case and in fact direct P−Hg bonds often generate much larger coupling constants (>4000 Hz):
- 31aX. L. R. Fontaine, S. J. Higgins, C. R. Langrick, B. L. Shaw, J. Chem. Soc. Dalton Trans. 1987, 777;
- 31bA. L. Balch, M. M. Olmstead, S. P. Rowley, Inorg. Chem. 1988, 27, 2275–2278.
- 32M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö, Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 33C. Lepetit, P. Fau, K. Fajerwerg, M. L. Kahn, B. Silvi, Coord. Chem. Rev. 2017, 345, 150–181.
- 34See the ESI for additional descriptions and other findings of computational studies.
- 35M. P. Blake, N. Kaltsoyannis, P. Mountford, Chem. Commun. 2015, 51, 5743–5746.
- 36The ELF and QTAIM analyses for {(PNP)Ni}2Hg was conducted by Dr. C. Lepetit to allow a comparison of the Ni−Hg-Ni interactions in this complex relative to what is observed in our complex.
- 37D. C. Rosenfeld, P. T. Wolczanski, K. A. Barakat, C. Buda, T. R. Cundari, F. C. Schroeder, E. B. Lobkovsky, Inorg. Chem. 2007, 46, 9715–9735.
- 38A similar reactivity has been reported for the complex [{(POCOP)Co}2(μ-Hg)] which gives [(POCOP)Co(μ2-H2)] and [{(POCOP)CoH2(μ2-H2)] depending on the reaction conditions. See ref. [29].
- 39
- 39aJ. D. Froehlich, C. P. Kubiak, J. Am. Chem. Soc. 2015, 137, 3565–3573;
- 39bJ. D. Froehlich, C. P. Kubiak, Inorg. Chem. 2012, 51, 3932–3934;
- 39cC. A. Kelly, Q. G. Mulazzani, M. Venturi, E. L. Blinn, M. A. J. Rodgers, J. Am. Chem. Soc. 1995, 117, 4911–4919;
- 39dJ. B. Diccianni, C. T. Hu, T. Diao, Angew. Chem. Int. Ed. 2019, 58, 13865–13868.
- 40The chemical shift of this major product is in the range for (POCOP)Ni−OR species, e.g., Ni−OSiMe3 at 174.8 ppm and Ni−O(t-Bu) at 170.6 ppm. See ref.: J. Hao, B. Vabre, D. Zargarian, Organometallics 2014, 33, 6568–6576.
- 41All H atoms and CH3 groups have been omitted for clarity. See Supporting Information for the structural parameters and other details.
- 42All H atoms and CH3 groups, as well as the two Et2O molecules from the structure of [Ni2CS3], have been omitted for clarity. See Supporting Information for the structural parameters and other details.
- 43For precedents on formation of carbonate species via insertion of CO2 into Ni−OH bonds see:
- 43aA. A. Lozano, M. Sáez, J. Pérez, L. García, L. Lezama, T. Rojo, G. López, G. García, M. D. Santana, Dalton Trans. 2006, 3906–3911;
- 43bJ. P. Wikstrom, A. S. Filatov, E. A. Mikhalyova, M. Shatruk, B. M. Foxman, E. V. Rybak-Akimova, Dalton Trans. 2010, 39, 2504–2514.
- 44All H atoms and CH3 groups, as well as one Et2O molecule have been omitted for clarity. See Supporting Information for the structural parameters and other details.
- 45J. Càmpora, P. Palma, D. del Río, E. Àlvarez, Organometallics 2004, 23, 1652–1655.
- 46G. R. Lee, J. M. Maher, N. J. Cooper, J. Am. Chem. Soc. 1987, 109, 2956–2962.
- 47G. Fachinetti, C. Floriani, A. Chiesi-Villa, C. Guastini, J. Am. Chem. Soc. 1979, 101, 1767–1775.
- 48
- 48aJ. Chatt, M. Kubota, G. J. Leigh, F. C. March, R. Mason, D. J. Yarrow, J. Chem. Soc. Chem. Commun. 1974, 1033–1034;
- 48bE. Carmona, F. Gonzalez, M. L. Poveda, J. M. Marin, J. Am. Chem. Soc. 1983, 105, 3365–3366;
- 48cR. Alvarez, J. L. Atwood, E. Carmona, P. J. Perez, M. L. Poveda, R. D. Rogers, Inorg. Chem. 1991, 30, 1493–1499.
- 49H. H. Karsch, Chem. Ber. 1977, 110, 2213–2221.
- 50
- 50aB. Horn, C. Limberg, C. Herwig, B. Braun, Chem. Commun. 2013, 49, 10923;
- 50bP. Zimmermann, A. F. R. Kilpatrick, D. Ar, S. Demeshko, B. Cula, C. Limberg, Chem. Commun. 2021, 57, 875;
- 50cR. J. Witzke, T. D. Tilley, Organometallics 2022, 41, 1565–1571.
- 51There are also reports on the reactivities of Ni(0) and Ni(I) precursors that generate μ-CO and μ-CO2 products but not carbonates:
- 51aC. H. Lee, D. S. Laitar, P. Mueller, J. P. Sadighi, J. Am. Chem. Soc. 2007, 129, 13802–13803;
- 51bC. Yoo, Y.-E. Kim, Y. Lee, Acc. Chem. Res. 2018, 51, 1144–1152;
- 51cR. J. Witzke, T. D. Tilley, Chem. Commun. 2019, 55, 6559–6562.
- 52M. V. Vollmer, R. C. Cammarota, C. C. Lu, Eur. J. Inorg. Chem. 2019, 2140–2145.
- 53N. W. Davies, A. S. P. Frey, M. G. Gardiner, J. Wang, Chem. Commun. 2006, 4853–4855.
- 54A. R. Willauer, F. Fadaei-Tirani, I. Zivkovic, A. Sienkiewicz, M. Mazzanti, Inorg. Chem. 2022, 61, 7436–7447.
- 55
- 55aI. Castro-Rodriguez, K. Meyer, J. Am. Chem. Soc. 2005, 127, 11242–11243;
- 55bO. T. Summerscales, A. S. P. Frey, F. G. N. Cloke, P. B. Hitchcock, Chem. Commun. 2009, 198–200;
- 55cO. P. Lam, S. C. Bart, H. Kameo, F. W. Heinemann, K. Meyer, Chem. Commun. 2010, 46, 3137–3139;
- 55dA.-C. Schmidt, A. V. Nizovtsev, A. Scheurer, F. W. Heinemann, K. Meyer, Chem. Commun. 2012, 48, 8634–8636;
- 55eV. Mougel, C. Camp, J. Pécaut, C. Copéret, L. Maron, C. E. Kefalidis, M. Mazzanti, Angew. Chem. Int. Ed. 2012, 51, 12280–12284;
- 55fN. Tsoureas, L. Castro, A. F. R. Kilpatrick, F. G. N. Cloke, L. Maron, Chem. Sci. 2014, 5, 3777–3788;
- 55gO. Cooper, C. Camp, J. Pécaut, C. E. Kefalidis, L. Maron, S. Gambarelli, M. Mazzanti, J. Am. Chem. Soc. 2014, 136, 6716–6723;
- 55hC. J. Inman, A. S. P. Frey, A. F. R. Kilpatrick, F. G. N. Cloke, S. M. Roe, Organometallics 2017, 36, 4539–4545;
- 55iR. J. Kahan, J. H. Farnaby, N. Tsoureas, F. G. N. Cloke, P. B. Hitchcock, M. P. Coles, S. M. Roe, C. Wilson, J. Organomet. Chem. 2018, 857, 110–122;
- 55jP. Waldschmidt, C. J. Hoerger, J. Riedhammer, F. W. Heinemann, C. T. Hauser, K. Meyer, Organometallics 2020, 39, 1602–1611;
- 55kR. J. Ward, S. P. Kelley, W. W. Lukens, J. R. Walensky, Organometallics 2022, 41, 1579–1585.
- 56L. Castro, O. P. Lam, S. C. Bart, K. Meyer, L. Maron, Organometallics 2010, 29, 5504–5510.
- 57T. Herskovitz, L. J. Guggenberger, J. Am. Chem. Soc. 1976, 98, 1615–1616.
- 58W. J. Evans, C. A. Seibel, J. W. Ziller, Inorg. Chem. 1998, 37, 770–776.
- 59All H atoms and CH3 groups, as well as two Et2O molecules, have been omitted for clarity. See Supporting Information for the structural parameters and other details, as well as NMR characterization of this compound.
- 60It should be emphasized that no reaction is observed between (POCOP)NiBr and CO2 in the absence of Na/Hg. Moreover, no reaction was observed when CO2 was bubbled through a toluene solution of (POCOP)NiBr and/or a drop of Hg added, confirming that the reduction of the Ni(II) center by Na/Hg is essential for inducing the observed reactivity.
- 61
- 61aB. Vabre, D. M. Spasyuk, D. Zargarian, Organometallics 2012, 31, 8561–8570;
- 61bB. Vabre, F. Lindeperg, D. Zargarian, Green Chem. 2013, 15, 3188–3194.
- 62See the ESI section of the following report: K. Chair, C. A. L. Caceres, S. Rajak, O. Schott, G. E. Ramírez-Caballero, T. Maris, G. S. Hanan, A. Duong, ACS Appl. Energ. Mater. 2022, 5, 11077–11090.
- 63Bruker (2012). APEX2/Bruker (2016) APEX3, Bruker AXS Inc., Madison, WI, USA.
- 64Bruker “SAINT Integration Software for Single Crystal Data”, Bruker AXS Inc., (Madison, WI, USA), 2012.
- 65
- 65aG. M. Sheldrick, SADABS/TWINABS, University of Göttingen, (Germany), 1996;
- 65bBruker SADABS/TWINABS, Bruker AXS Inc., (Madison, WI, USA), 2001.
- 66Bruker Data Preparation and Reciprocal Space Exploration Program, Bruker AXS Inc., (Madison, WI, USA), 2012.
- 67O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339–341.
- 68G. M. Sheldrick, Acta Crystallogr. 2015, A71, 3–8.
- 69G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3–8.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.