Insights Into the Role of π-Electrons of Aromatic Aldehydes in Passivating Perovskite Defects
Xiaoqing Jiang.
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorLina Zhu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorLikai Zheng
Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorKaiwen Dong
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorYanfeng Yin
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Minhuan Wang
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Shiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shuping Pang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Xin Guo
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorXiaoqing Jiang.
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorLina Zhu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorBingqian Zhang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
These authors contributed equally to this work.
Search for more papers by this authorGuangyue Yang
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorLikai Zheng
Laboratory of Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Search for more papers by this authorKaiwen Dong
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorYanfeng Yin
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Minhuan Wang
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024 China
Search for more papers by this authorCorresponding Author
Shiwei Liu
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042 China
Search for more papers by this authorCorresponding Author
Shuping Pang
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
Search for more papers by this authorCorresponding Author
Xin Guo
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
Search for more papers by this authorAbstract
Carbonyl-containing aromatic ketones or aldehydes have been demonstrated to be effective defect passivators for perovskite films to improve performances of perovskite solar cells (PSCs). It has been claimed that both π-electrons within aromatic units and carbonyl groups can, separately, interact with ionic defects, which, however, causes troubles in understanding the passivation mechanism of those aromatic ketone/aldehyde molecules. Herein, we clarify the effect of both moieties in one molecule on the defect passivation by investigating three aromatic aldehydes with varied conjugation planes, namely, biphenyl-4-carbaldehyde (BPCA), naphthalene-2-carbaldehyde (NACA) and pyrene-1-carbaldehyde (PyCA). Our findings reveal that the π-electrons located in the conjugated system do not directly present strong passivation for defects, but enhance the electron cloud density of the carbonyl group augmenting its interaction with defect sites; thereby, with the extended conjugation plane of the three molecules, their defect passivation ability is gradually improved. PSCs incorporating PyCA with the most extended π-electrons delocalization achieve maximum power conversion efficiencies of 25.67 % (0.09 cm2) and 21.76 % (14.0 cm2). Moreover, these devices exhibit outstanding long-term stability, retaining 95 % of their initial efficiency after operation for 1000 hours at the maximum power point.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420369-sup-0001-misc_information.pdf1.9 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Lei, Y. Li, C. Lu, Q. Yan, Y. Wu, F. Babbe, H. Gong, S. Zhang, J. Zhou, R. Wang, R. Zhang, Y. Chen, H. Tsai, Y. Gu, H. Hu, Y.-H. Lo, W. Nie, T. Lee, J. Luo, K. Yang, K.-I. Jang, S. Xu, Nature 2022, 608, 317–323.
- 2X. Li, X. Wu, B. Li, Z. Cen, Y. Shang, W. Lian, R. Cao, L. Jia, Z. Li, D. Gao, X. Jiang, T. Chen, Y. Lu, Z. Zhu, S. Yang, Energy Environ. Sci. 2022, 15, 4813–4822.
- 3H. Meng, K. Mao, F. Cai, K. Zhang, S. Yuan, T. Li, F. Cao, Z. Su, Z. Zhu, X. Feng, W. Peng, J. Xu, Y. Gao, W. Chen, C. Xiao, X. Wu, M. D. McGehee, J. Xu, Nat. Energy 2024, 9, 536–547.
- 4H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, S. Il Seok, Nature 2021, 598, 444–450.
- 5Y. Tian, X. Zhang, K. Zhao, X. Miao, T. Deng, W. Fan, D. Jin, X. Jiang, S. Zhong, X. Wang, S. Wang, P. Shi, L. Tian, L. Yao, S. Gong, X. Yu, X. Gao, Z. Chen, X. Chen, Y. Lu, V. Shrote, Y. Yang, D. Yang, R. Wang, J. Xue, Nat. Photonics 2024, 18, 960–966.
- 6T. Wu, P. Wang, L. Zheng, Y. Zhao, Y. Hua, Adv. Energy Mater. 2024, 14, 2400078.
- 7H. Zhang, X. Yu, M. Li, Z. Zhang, Z. Song, X. Zong, G. Duan, W. Zhang, C. Chen, W.-H. Zhang, Y. Liu, M. Liang, Angew. Chem. Int. Ed. 2023, 62, e202314270.
- 8M. Almalki, M. H. Alotaibi, A. Q. Alanazi, F. T. Eickemeyer, S. M. Alenzi, Y. A. Alzahrani, L. Piveteau, A. Y. Alymani, A. Albadri, H. Albrithen, J. V. Milić, S. M. Zakeeruddin, H. Zhang, M. Grätzel, Adv. Funct. Mater. 2024, 34, 2309789.
- 9X. Y. Chin, D. Turkay, J. A. Steele, S. Tabean, S. Eswara, M. Mensi, P. Fiala, C. M. Wolff, A. Paracchino, K. J. S. Artuk, 2023, 381, 59–63.
- 10C. Liu, Y. Yang, H. Chen, J. Xu, A. Liu, A. S. Bati, H. Zhu, L. Grater, S. S. Hadke, C. J. S. Huang, 2023, 382, 810–815.
- 11S. Mariotti, E. Köhnen, F. Scheler, K. Sveinbjörnsson, L. Zimmermann, M. Piot, F. Yang, B. Li, J. Warby, A. J. S. Musiienko, 2023, 381, 63–69.
- 12J.-P. Correa-Baena, S.-H. Turren-Cruz, W. Tress, A. Hagfeldt, C. Aranda, L. Shooshtari, J. Bisquert, A. J. A. E. L. Guerrero, 2017, 2, 681–688.
- 13T. Duan, S. You, M. Chen, W. Yu, Y. Li, P. Guo, J. J. Berry, J. M. Luther, K. Zhu, Y. J. S. Zhou, 2024, 384, 878–884.
- 14J. Ge, R. Chen, Y. Ma, Y. Wang, Y. Hu, L. Zhang, F. Li, X. Ma, S.-W. Tsang, J. You, A. K. Y. Jen, S. F. Liu, Angew. Chem. Int. Ed. 2024, 63, e202319282.
- 15C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A. S. R. Bati, I. W. Gilley, J. Chen, A. Maxwell, B. Vishal, R. P. Reynolds, T. E. Wiggins, Z. Wang, C. Huang, J. Fletcher, Y. Liu, L. X. Chen, S. De Wolf, B. Chen, D. Zheng, T. J. Marks, A. Facchetti, E. H. Sargent, M. G. Kanatzidis, Nature 2024, 633, 359–364.
- 16S. Teale, M. Degani, B. Chen, E. H. Sargent, G. Grancini, Nat. Energy 2024, 9, 779–792.
- 17J. Zhang, J. Li, J. Duan, X. Zhang, J. Dou, Q. Guo, C. Jiang, Y. Zhao, H. Huang, Q. Tang, Adv. Funct. Mater. 2024, 5, 2401662.
- 18E. H. Jung, N. J. Jeon, E. Y. Park, C. S. Moon, T. J. Shin, T.-Y. Yang, J. H. Noh, J. Seo, Nature 2019, 567, 511–515.
- 19T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, S. Liu, Adv. Mater. 2018, 30, 1706576.
- 20T. Wang, Y. Li, Q. Cao, J. Yang, B. Yang, X. Pu, Y. Zhang, J. Zhao, Y. Zhang, H. Chen, A. Hagfeldt, X. Li, Energy Environ. Sci. 2022, 15, 4414–4424.
- 21J. Xie, K. Yan, H. Zhu, G. Li, H. Wang, H. Zhu, P. Hang, S. Zhao, W. Guo, D. Ye, L. Shao, X. Guan, T. Ngai, X. Yu, J. Xu, Sci. Bull. 2020, 65, 1726–1734.
- 22C. Zheng, L. Liu, Y. Li, A. Gao, Z. Yang, L. Zhang, Z. Liu, D. Wang, S. Liu, Adv. Energy Mater. 2023, 13, 2301302.
- 23Y. Cai, J. Cui, M. Chen, M. Zhang, Y. Han, F. Qian, H. Zhao, S. Yang, Z. Yang, H. Bian, T. Wang, K. Guo, M. Cai, S. Dai, Z. Liu, S. Liu, Adv. Funct. Mater. 2021, 31, 2005776.
- 24J. Guo, J. Sun, L. Hu, S. Fang, X. Ling, X. Zhang, Y. Wang, H. Huang, C. Han, C. Cazorla, Y. Yang, D. Chu, T. Wu, J. Yuan, W. Ma, Adv. Energy Mater. 2022, 12, 2200537.
- 25J. Peng, J. I. Khan, W. Liu, E. Ugur, T. Duong, Y. Wu, H. Shen, K. Wang, H. Dang, E. Aydin, X. Yang, Y. Wan, K. J. Weber, K. R. Catchpole, F. Laquai, S. De Wolf, T. P. White, Adv. Energy Mater. 2018, 8, 1801208.
- 26Q. Zhao, B. Zhang, W. Hui, Z. Su, H. Wang, Q. Zhang, K. Gao, X. Zhang, B.-H. Li, X. Gao, X. Wang, S. De Wolf, K. Wang, S. Pang, J. Am. Chem. Soc. 2024, 146, 19108–19117.
- 27B. Zhang, C. Chen, X. Wang, X. Du, D. Liu, X. Sun, Z. Li, L. Hao, C. Gao, Y. Li, Z. Shao, X. Wang, G. Cui, S. Pang, Angew. Chem. Int. Ed. 2023, 62, e202213478.
- 28Z. Wu, S. R. Raga, E. J. Juarez-Perez, X. Yao, Y. Jiang, L. K. Ono, Z. Ning, H. Tian, Y. Qi, Adv. Mater. 2018, 30, 1703670.
- 29Y. Xu, X. Guo, Z. Lin, Q. Wang, J. Su, J. Zhang, Y. Hao, K. Yang, J. Chang, Angew. Chem. Int. Ed. 2023, 62, e202306229.
- 30J.-H. Kim, S.-G. Kim, N.-G. Park, ACS Energy Lett. 2021, 6, 3435–3442.
- 31Y. Lao, S. Yang, W. Yu, H. Guo, Y. Zou, Z. Chen, L. Xiao, Adv. Sci. 2022, 9, 2105307.
- 32X. Wang, D. Liu, R. Liu, X. Du, B. Zhang, X. Sun, C. Chen, Z. Li, Q. Zhao, Z. Shao, X. Wang, G. Cui, S. Pang, Adv. Energy Mater. 2023, 13, 2203635.
- 33X. Liu, J. Min, Q. Chen, T. Liu, G. Qu, P. Xie, H. Xiao, J.-J. Liou, T. Park, Z.-X. Xu, Angew. Chem. Int. Ed. 2022, 61, e202117303.
- 34X. Liu, J. Min, Q. Chen, T. Liu, G. Qu, P. Xie, H. Xiao, J.-J. Liou, T. Park, Z.-X. Xu, Angew. Chem. Int. Ed. 2022, 61, e202201861.
- 35X. Deng, Z. Cao, Y. Yuan, M. Oliver Lam Chee, L. Xie, A. Wang, Y. Xiang, T. Li, P. Dong, L. Ding, F. Hao, Coord. Chem. Rev. 2020, 420, 213408.
- 36X. Jiang, B. Zhang, G. Yang, Z. Zhou, X. Guo, F. Zhang, S. Yu, S. Liu, S. Pang, Angew. Chem. Int. Ed. 2023, 62, e202302462.
- 37H. Wang, Z. Zhang, X. Wang, L. Duan, J. Luo, Nano Energy 2024, 123, 109423.
- 38Q. Hu, L. Zhao, J. Wu, K. Gao, D. Luo, Y. Jiang, Z. Zhang, C. Zhu, E. Schaible, A. J. N. C. Hexemer, Nat. Commun. 2017, 8, 15688.
- 39G. Li, Z. Su, L. Canil, D. Hughes, M. H. Aldamasy, J. Dagar, S. Trofimov, L. Wang, W. Zuo, J. J. J. S. Jerónimo-Rendon, Science 2023, 379, 399–403.
- 40M. Wang, Y. Zhao, X. Jiang, Y. Yin, I. Yavuz, P. Zhu, A. Zhang, G. S. Han, H. S. Jung, Y. J. J. Zhou, Joule 2022, 6, 1032–1048.
- 41J. Sun, Z. Zhang, Y. Chen, M. Qiu, W. Jin, C.-Z. Ning, H. J. Snaith, A. K. Y. Jen, D. Lei, Adv. Funct. Mater. 2024, 34, 2401247.
- 42X. Liu, B. Zheng, L. Shi, S. Zhou, J. Xu, Z. Liu, J. S. Yun, E. Choi, M. Zhang, Y. Lv, W.-H. Zhang, J. Huang, C. Li, K. Sun, J. Seidel, M. He, J. Peng, X. Hao, M. Green, Nat. Photonics 2023, 17, 96–105.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.