Achieving Photocatalytic Overall Nitrogen Fixation via an Enzymatic Pathway on a Distorted CoP4 Configuration
Corresponding Author
Xin Wang
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen University of Advanced Technology, Shenzhen, 518107 China
These authors contributed equally to this work.
Search for more papers by this authorYuqi Zhao
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590 China
These authors contributed equally to this work.
Search for more papers by this authorXi Wu
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035 China
Search for more papers by this authorBin Zhang
Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035 China
Search for more papers by this authorJian Tian
School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Wai-Yeung Wong
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Fuxiang Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorCorresponding Author
Xin Wang
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen University of Advanced Technology, Shenzhen, 518107 China
These authors contributed equally to this work.
Search for more papers by this authorYuqi Zhao
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590 China
These authors contributed equally to this work.
Search for more papers by this authorXi Wu
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 China
Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035 China
Search for more papers by this authorBin Zhang
Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035 China
Search for more papers by this authorJian Tian
School of Materials Science and Engineering, Shan-dong University of Science and Technology, Qingdao, 266590 China
Search for more papers by this authorCorresponding Author
Wai-Yeung Wong
Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
Search for more papers by this authorCorresponding Author
Fuxiang Zhang
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023 China
Search for more papers by this authorAbstract
Photocatalytic nitrogen (N2) fixation over semiconductors has always suffered from poor conversion efficiency owing to weak N2 adsorption and the difficulty of N≡N triple bond dissociation. Herein, a Co single-atom catalyst (SAC) model with a C-defect-evoked CoP4 distorted configuration was fabricated using a selective phosphidation strategy, wherein P-doping and C defects co-regulate the local electronic structure of Co sites. Comprehensive experiments and theoretical calculations revealed that the distorted CoP4 configuration caused a strong charge redistribution between the Co atoms and adjacent C atoms, minimizing their electronegativity difference. Consequently, the N2 adsorption pattern switched from an “end-on” to a “side-on” mode with a high N2 adsorption energy of −1.40 eV and an elongated N−N bond length of 1.20 Å, notably decreasing the N2 adsorption/activation energy barrier. In the absence of sacrificial agents, the Co SAC achieved excellent photocatalytic overall N2 fixation performance via an enzymatic pathway. The NH3 yielding rate peaked at 1249.5 μmol h−1 g−1 with an apparent quantum yield of 3.51 % at 365 nm. Moreover, the selective phosphidation strategy has universality for synthesizing other SACs, such as those containing Ni and Fe. This study offers new insight into co-regulating the electronic structure of SACs for efficient photocatalytic overall N2 fixation.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420327-sup-0001-misc_information.pdf4.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1J. W. Erisman, M. A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 2008, 1, 636–639.
- 2J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M. Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K. Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P. Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611.
- 3R. F. Service, Science 2014, 345, 610–610.
- 4B. H. Suryanto, H.-L. Du, D. Wang, J. Chen, A. N. Simonov, D. R. MacFarlane, Nature Catalysis 2019, 2, 290–296.
- 5M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, H. Hosono, Nat. Commun. 2015, 6, 6731.
- 6Y. Wei, W. Jiang, Y. Liu, X. Bai, D. Hao, B.-J. Ni, Nanoscale 2022, 14, 2990–2997.
- 7R. Shi, Y. Zhao, G. I. N. Waterhouse, S. Zhang, T. Zhang, ACS Catal. 2019, 9, 9739–9750.
- 8Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin, Y. Liu, Z. Jiang, Chem. Soc. Rev. 2023, 52, 6938–6956.
- 9Z.-K. Shen, M. Cheng, Y.-J. Yuan, L. Pei, J. Zhong, J. Guan, X. Li, Z.-J. Li, L. Bao, X. Zhang, Z.-T. Yu, Z. Zou, Appl. Catal. B 2021, 295, 120274.
- 10T. He, Z. Zhao, R. Liu, X. Liu, B. Ni, Y. Wei, Y. Wu, W. Yuan, H. Peng, Z. Jiang, Y. Zhao, J. Am. Chem. Soc. 2023, 145, 6057–6066.
- 11Y. Yang, H. Jia, N. Hu, M. Zhao, J. Li, W. Ni, C. Zhang, J. Am. Chem. Soc. 2024, 146, 7734–7742.
- 12Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Wu, C. Tung, T. Zhang, Adv. Mater. 2019, 31, 1806482.
- 13H. Li, J. Zhang, X. Deng, Y. Wang, G. Meng, R. Liu, J. Huang, M. Tu, C. Xu, Y. Peng, B. Wang, Y. Hou, Angew. Chem. Int. Ed. 2024, 63, e202316384.
- 14Y. Sun, H. Ji, Y. Sun, G. Zhang, H. Zhou, S. Cao, S. Liu, L. Zhang, W. Li, X. Zhu, H. Pang, Angew. Chem. 2024, 136, e202316973.
- 15W. Guo, K. Zhang, Z. Liang, R. Zou, Q. Xu, Chem. Soc. Rev. 2019, 48, 5658–5716.
- 16A. J. Martín, T. Shinagawa, J. Pérez-Ramírez, Chem 2019, 5, 263–283.
- 17X. Sun, L. Sun, G. Li, Y. Tuo, C. Ye, J. Yang, J. Low, X. Yu, J. H. Bitter, Y. Lei, D. Wang, Y. Li, Angew. Chem. Int. Ed. 2022, 61, e202207677.
- 18Q. Zhang, S. Gao, Y. Guo, H. Wang, J. Wei, X. Su, H. Zhang, Z. Liu, J. Wang, Nat. Commun. 2023, 14, 1147.
- 19G. Dong, X. Huang, Y. Bi, Angew. Chem. Int. Ed. 2022, 61, e202204271.
- 20G. Ren, J. Zhao, Z. Zhao, Z. Li, L. Wang, Z. Zhang, C. Li, X. Meng, Angew. Chem. Int. Ed. 2024, 63, e202314408.
- 21N. Zhang, L. Li, Q. Shao, T. Zhu, X. Huang, X. Xiao, ACS Appl. Energ. Mater. 2019, 2, 8394–8398.
- 22R. Wu, S. Gao, C. Jones, M. Sun, M. Guo, R. Tai, S. Chen, Q. Wang, Adv. Funct. Mater. 2024, 2314051.
- 23S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang, Nat. Energy 2016, 1, 16184.
- 24S. Zhao, C. Tan, C.-T. He, P. An, F. Xie, S. Jiang, Y. Zhu, K.-H. Wu, B. Zhang, H. Li, J. Zhang, Y. Chen, S. Liu, J. Dong, Z. Tang, Nat. Energy 2020, 5, 881–890.
- 25X. Wang, Y. Wang, M. Ma, X. Zhao, J. Zhang, F. Zhang, Small 2024, 20, 2311841.
- 26X. Liang, B. Zheng, L. Chen, J. Zhang, Z. Zhuang, B. Chen, ACS Appl. Mater. Interfaces 2017, 9, 23222–23229.
- 27H. Liu, P. Zhu, D. Yang, C. Zhong, J. Li, X. Liang, L. Wang, H. Yin, D. Wang, Y. Li, J. Am. Chem. Soc. 2024, 146, 2132–2140.
- 28M. Butler, P. A. Mañez, G. M. Cabrera, P. Maître, J. Phys. Chem. A 2014, 118, 4942–4954.
- 29T. Lana-Villarreal, A. Rodes, J. M. Pérez, R. Gómez, J. Am. Chem. Soc. 2005, 127, 12601–12611.
- 30K. C. Devarayapalli, S. V. P. Vattikuti, T. V. M. Sreekanth, K. S. Yoo, P. C. Nagajyothi, J. Shim, Appl. Organomet. Chem. 2020, 34, e5376.
- 31M. Yang, C. Zhang, Y. Fan, T. Lin, X. Chen, Y. Lu, H. Wang, L. Zhong, Y. Sun, Mater. Lett. 2018, 222, 92–95.
- 32S. Zhao, J. Xu, M. Mao, L. Li, X. Li, J. Colloid Interface Sci. 2021, 583, 435–447.
- 33A. Deng, E. Zhao, Q. Li, Y. Sun, Y. Liu, S. Yang, H. He, Y. Xu, W. Zhao, H. Song, Z. Xu, Z. Chen, ACS Nano 2023, 17, 11869–11881.
- 34X. Wang, L. Chai, J. Ding, L. Zhong, Y. Du, T.-T. Li, Y. Hu, J. Qian, S. Huang, Nano Energy 2019, 62, 745–753.
- 35J. Hu, T. Yang, X. Yang, J. Qu, Y. Cai, C. M. Li, Small 2022, 18, 2105376.
- 36D. Kong, Q. Xu, N. Chu, H. Wang, Y. V. Lim, J. Cheng, S. Huang, T. Xu, X. Li, Y. Wang, Y. Luo, H. Y. Yang, Small 2024, 20, 2310012.
- 37J. Wan, Z. Zhao, H. Shang, B. Peng, W. Chen, J. Pei, L. Zheng, J. Dong, R. Cao, R. Sarangi, Z. Jiang, D. Zhou, Z. Zhuang, J. Zhang, D. Wang, Y. Li, J. Am. Chem. Soc. 2020, 142, 8431–8439.
- 38T. Y. Ma, J. Ran, S. Dai, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2015, 54, 4646–4650.
- 39S. Cao, Y. Chen, H. Wang, J. Chen, X. Shi, H. Li, P. Cheng, X. Liu, M. Liu, L. Piao, Joule 2018, 2, 549–557.
- 40B. Yang, J. Han, Q. Zhang, G. Liao, W. Cheng, G. Ge, J. Liu, X. Yang, R. Wang, X. Jia, Carbon 2023, 202, 348–357.
- 41H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Adv. Mater. 2020, 32, 2003649.
- 42X. Wang, Z. Fu, L. Zheng, C. Zhao, X. Wang, S. Y. Chong, F. McBride, R. Raval, M. Bilton, L. Liu, Chem. Mater. 2020, 32, 9107–9114.
- 43Y. Qi, J. Zhang, Y. Kong, Y. Zhao, S. Chen, D. Li, W. Liu, Y. Chen, T. Xie, J. Cui, C. Li, K. Domen, F. Zhang, Nat. Commun. 2022, 13, 484.
- 44X. Xin, Y. Li, Y. Zhang, Y. Wang, X. Chi, Y. Wei, C. Diao, J. Su, R. Wang, P. Guo, J. Yu, J. Zhang, A. J. Sobrido, M.-M. Titirici, X. Li, Nat. Commun. 2024, 15, 337.
- 45Z. Wang, Y. Inoue, T. Hisatomi, R. Ishikawa, Q. Wang, T. Takata, S. Chen, N. Shibata, Y. Ikuhara, K. Domen, Nat. Catal. 2018, 1, 756–763.
- 46B. Dong, J. Cui, T. Liu, Y. Gao, Y. Qi, D. Li, F. Xiong, F. Zhang, C. Li, Adv. Energy Mater. 2018, 8, 1801660.
- 47X. Shi, C. Dai, X. Wang, J. Hu, J. Zhang, L. Zheng, L. Mao, H. Zheng, M. Zhu, Nat. Commun. 2022, 13, 1287.
- 48J. Wang, Z. Zhang, H. Song, B. Zhang, J. Liu, X. Shai, L. Miao, Adv. Funct. Mater. 2021, 31, 2008578.
- 49Y. Bo, H. Wang, Y. Lin, T. Yang, R. Ye, Y. Li, C. Hu, P. Du, Y. Hu, Z. Liu, R. Long, C. Gao, B. Ye, L. Song, X. Wu, Y. Xiong, Angew. Chem. Int. Ed. 2021, 60, 16085–16092.
- 50P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Adv. Mater. 2022, 34, 2200563.
- 51W. Wang, L. Du, R. Xia, R. Liang, T. Zhou, H. K. Lee, Z. Yan, H. Luo, C. Shang, D. L. Phillips, Z. Guo, Energy Environ. Sci. 2023, 16, 460–472.
- 52Y.-J. Tang, L. You, K. Zhou, ACS Appl. Mater. Interfaces 2020, 12, 25884–25894.
- 53L. Ji, Y. Wei, P. Wu, M. Xu, T. Wang, S. Wang, Q. Liang, T. J. Meyer, Z. Chen, Chem. Mater. 2021, 33, 9165–9173.
- 54X. Wang, M. Ma, X. Zhao, P. Jiang, Y. Wang, J. Wang, J. Zhang, F. Zhang, Small Structures 2023, 4, 2300123.
- 55X. Wang, C. Xu, Z. Wang, Y. Wang, X. Zhao, J. Zhang, M. Ma, Q. Guo, F. Zhang, J. Mater. Chem. A 2023, 11, 10883–10890.
- 56G. Sun, Z.-J. Zhao, L. Li, C. Pei, X. Chang, S. Chen, T. Zhang, K. Tian, S. Sun, L. Zheng, J. Gong, Nat. Chem. 2024, 16, 575–583.
- 57S. E. Collins, M. A. Baltanás, J. L. G. Fierro, A. L. Bonivardi, J. Catal. 2002, 211, 252–264.
- 58Z. Liu, J. Liang, Q. Song, Y. Li, Z. Zhang, M. Zhou, W. Wei, H. Xu, C.-S. Lee, H. Li, Z. Jiang, Appl. Catal. B 2023, 328, 122472.
- 59S. Lin, Z. Sun, X. Qiu, H. Li, P. Ren, H. Xie, L. Guo, Small 2024, 20, 2306983.
- 60J. Yuan, W. Feng, Y. Zhang, J. Xiao, X. Zhang, Y. Wu, W. Ni, H. Huang, W. Dai, Adv. Mater. 2024, 36, 2303845.
- 61H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393–6399.
- 62X. Liu, Y. Luo, C. Ling, Y. Shi, G. Zhan, H. Li, H. Gu, K. Wei, F. Guo, Z. Ai, L. Zhang, Appl. Catal. B 2022, 301, 120766.
- 63T. Wu, X. Zhu, Z. Xing, S. Mou, C. Li, Y. Qiao, Q. Liu, Y. Luo, X. Shi, Y. Zhang, X. Sun, Angew. Chem. Int. Ed. 2019, 58, 18449–18453.
- 64M. Cheng, C. Xiao, Y. Xie, J. Mater. Chem. A 2019, 7, 19616–19633.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.