Ultra-small Metallic Nickel Nanoparticles on Dealuminated Zeolite for Active and Durable Catalytic Dehydrogenation
Huixin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHai Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYating Lv
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYuexin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYike Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQingsong Luo
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYu Hui
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLujie Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorMengting Zhang
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorKunming Hou
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. Lina Li
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. Weili Dai
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Liang Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Zhejiang Baima Lake Laboratory, Hangzhou, 311121 China
Search for more papers by this authorProf. Feng-Shou Xiao
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Zhejiang Baima Lake Laboratory, Hangzhou, 311121 China
Search for more papers by this authorHuixin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorHai Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYating Lv
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYuexin Wu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYike Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorQingsong Luo
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorYu Hui
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorLujie Liu
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Search for more papers by this authorMengting Zhang
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorKunming Hou
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. Lina Li
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorJianrong Zeng
Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204 China
Search for more papers by this authorProf. Weili Dai
School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350 China
Search for more papers by this authorCorresponding Author
Prof. Liang Wang
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Zhejiang Baima Lake Laboratory, Hangzhou, 311121 China
Search for more papers by this authorProf. Feng-Shou Xiao
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027 China
Zhejiang Baima Lake Laboratory, Hangzhou, 311121 China
Search for more papers by this authorAbstract
Each step in the catalyst synthesis process plays an important role in tuning the catalyst structures. For zeolite-supported nickel catalysts, we found the conventional calcination-reduction method typically leads to the formation of large nickel particles, but a pre-aging in hydrogen or nitrogen at a low temperature prior to final reduction can result in ultra-small nickel nanoparticles in a metallic state. This pre-aging treatment facilitates the interaction between Ni2+ cations and silanol nests on zeolite before the decomposition of the metal salt, leading to the formation of nanoparticles with an average diameter of ~1.2 nm. In contrast, the pre-calcination in oxygen caused the Ni2+ aggregation before the decomposition of the metal salt precursor, yielding nickel nanoparticles larger than 5 nm. Given the structure sensitivity of nickel in cyclohexane dehydrogenation for hydrogen production, the ultra-small nickel nanoparticles exhibited significantly enhanced activity and durability compared to previous nickel catalysts.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420306-sup-0001-misc_information.pdf81 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Y. Wang, P. Hu, J. Yang, Y. Zhu, D. Chen, Chem. Soc. Rev. 2021, 50, 4299–4358.
- 2E. Gianotti, M. Taillades-Jacquin, J. Rozière, D. J. Jones, ACS Catal. 2018, 8, 4660–4680.
- 3M.-J. Zhou, Y. Miao, Y. Gu, Y. Xie, Adv. Mater. 2024, 36, 2311355.
- 4Y. Deng, Y. Guo, Z. Jia, J. Liu, J. Guo, X. Cai, C. Dong, M. Wang, C. Li, J. Diao, Z. Jiang, J. Xie, N. Wang, H. Xiao, B. Xu, H. Zhang, H. Liu, J. Li, D. Ma, J. Am. Chem. Soc. 2022, 144, 3535–3542.
- 5C. Dong, Z. Gao, Y. Li, M. Peng, M. Wang, Y. Xu, C. Li, M. Xu, Y. Deng, X. Qin, F. Huang, X. Wei, Y.-G. Wang, H. Liu, W. Zhou, D. Ma, Nat. Catal. 2022, 5, 485–493.
- 6S. De, J. Zhang, R. Luque, N. Yan, Energy Environ. Sci. 2016, 9, 3314–3347.
- 7X. Li, A.-E. Surkus, J. Rabeah, M. Anwar, S. Dastigir, H. Junge, A. Brückner, M. Beller, Angew. Chem. Int. Ed. 2020, 59, 15849–15854.
- 8S. Chen, Y. Xu, X. Chang, Y. Pan, G. Sun, X. Wang, D. Fu, C. Pei, Z.-J. Zhao, D. Su, J. Gong, Science 2024, 385, 295–300.
- 9X. Zhang, A. Li, H. Tang, Y. Xu, X. Qin, Z. Jiang, Q. Yu, W. Zhou, L. Chen, M. Wang, X. Liu, D. Ma, Angew. Chem. Int. Ed. 2023, 62, e202307061.
- 10H. Adkins, L. Kuick, M. Farlow, B. Wojcik, J. Am. Chem. Soc. 1934, 56, 2425–2428.
- 11M. Boudart, Adv. Catal. 1969, 20, 153–166.
- 12S. Li, J. Gong, Chem. Soc. Rev. 2014, 43, 7245–7256.
- 13L. Wang, L. Wang, X. Meng, F.-S. Xiao, Adv. Mater. 2019, 31, 1901905.
- 14L. Liu, A. Corma, Nat. Rev. Mater. 2020, 6, 244–263.
- 15M. Macino, A. J. Barnes, S. M. Althahban, R. Qu, E. K. Gibson, D. J. Morgan, S. J. Freakley, N. Dimitratos, C. J. Kiely, X. Gao, A. M. Beale, D. Bethell, Q. He, M. Sankar, G. J. Hutchings, Nat. Catal. 2019, 2, 873–881.
- 16A. Xu, T. Liu, D. Liu, W. Li, H. Huang, S. Wang, L. Xu, X. Liu, S. Jiang, Y. Chen, M. Sun, Q. Luo, T. Ding, T. Yao, Angew. Chem. Int. Ed. 2024, 63, e202410545.
- 17H. Tang, J. Wei, F. Liu, B. Qiao, X. Pan, L. Li, J. Liu, J. Wang, T. Zhang, J. Am. Chem. Soc. 2016, 138, 56–59.
- 18Z. Luo, X. Han, Z. Ma, B. Zhang, X. Zheng, Y. Liu, M. Gao, G. Zhao, Y. Lin, H. Pan, W. Sun, Angew. Chem. Int. Ed. 2024, 63, 202406728.
- 19Y. Xie, K. Ding, Z. Liu, R. Tao, Z. Sun, H. Zhang, G. An, J. Am. Chem. Soc. 2009, 131, 6648–6649.
- 20H. Wei, X. Liu, A. Wang, L. Zhang, B. Qiao, X. Yang, Y. Huang, S. Miao, J. Liu, T. Zhang, Nat. Commun. 2014, 5, 5634–5642.
- 21B. Valle, B. Aramburu, A. Remiro, J. Bilbao, A. G. Gayubo, Appl. Catal. B 2014, 147, 402–410.
- 22D. He, S. Wu, X. Cao, D. Chen, L. Zhang, Y. Zhang, Y. Luo, Appl. Catal. B 2024, 346, 123728.
- 23W. Gac, M. Greluk, G. Slowik, Y. Millot, L. Valentin, S. Dzwigaj, Appl. Catal. B 2018, 237, 94–109.
- 24J. Wang, Y. Fu, W. Kong, F. Jin, J. Bai, J. Zhang, Y. Sun, Appl. Catal. B 2020, 282, 119546.
- 25J. Zhang, T. Wang, C. Shi, L. Pan, X. Zhang, C. Peng, J.-J. Zou, Chem. Eng. J. 2023, 470, 144197.
- 26J. Zhang, Y. Li, H. Song, L. Zhang, Y. Wu, Y. He, L. Ma, J. Hong, A. Tayal, N. Marinkovic, D.-E. Jiang, Z. Li, Z. Wu, F. Polo-Garzon, Nat. Commun. 2024, 15, 8566.
- 27M. A. Camblor, A. Corma, J. Pérez-Pariente, Zeolites 1993, 13, 82–87.
- 28Z. Liu, D. C. Grinter, P. G. Lustemberg, T. D. Nguyen-Phan, Y. Zhou, S. Luo, I. Waluyo, E. J. Crumlin, D. J. Stacchiola, J. Zhou, J. Carrasco, H. F. Busnengo, M. V. Ganduglia-Pirovano, S. D. Senanayake, J. A. Rodriguez, Angew. Chem. Int. Ed. 2016, 55, 7455–7459.
- 29T. Margossian, K. Larmier, S. M. Kim, F. Krumeich, A. Fedorov, P. Chen, C. R. Müller, C. Copéret, J. Am. Chem. Soc. 2017, 139, 6919–6927.
- 30W. Wang, W. Chu, N. Wang, W. Yang, C. Jiang, Int. J. Hydrogen Energy 2013, 38, 2283–2291.
- 31G. Zhu, K. I. Fujimoto, D. Y. Zemlyanov, A. K. Datye, F. H. Ribeiro, J. Catal. 2004, 225, 170–178.
- 32R. Gholami, K. J. Smith, Appl. Catal. B 2015, 168, 156–163.
- 33L. M. Gandia, M. Montes, J. Catal. 1994, 145, 276–288.
- 34Y. Xie, J. Chen, X. Wu, J. Wen, R. Zhao, Z. Li, G. Tian, Q. Zhang, P. Ning, J. Hao, ACS Catal. 2022, 12, 10587–10602.
- 35Y. Liu, Y. Chen, Z. Gao, X. Zhang, L. Zhang, M. Wang, B. Chen, Y. Diao, Y. Li, D. Xiao, X. Wang, D. Ma, C. Shi, Appl. Catal. B 2022, 307, 121202.
- 36M. Che, Z. Cheng, C. Louis, J. Am. Chem. Soc. 1995, 117, 2008–2018.
- 37C. Hammond, S. Conrad, I. Hermans, Angew. Chem. Int. Ed. 2012, 51, 11736–11739.
- 38L. Qi, Y. Zhang, M. A. Conrad, C. K. Russell, J. Miller, A. Bell, J. Am. Chem. Soc. 2020, 142, 14674–14687.
- 39Y. Zhang, S. Li, Y. Fu, L. Zheng, H. Li, W. Kong, B. Pan, J. Li, J. Zhang, Y. Sun, Appl. Catal. B 2024, 350, 123903.
- 40D. P. Estes, G. Siddiqi, F. Allouche, K. V. Kovtunov, O. V. Safonova, A. L. Trigub, I. V. Koptyug, C. Copéret, J. Am. Chem. Soc. 2016, 138, 14987–14997.
- 41F. Mittendorfer, J. Hafner, Surf. Sci. 2001, 472, 133–153.
- 42Z. Kou, Z. Zhi, G. Xu, Y. An, C. He, Appl. Catal. A 2013, 467, 196–201.
- 43Z. Xia, H. Lu, H. Liu, Z. Zhang, Y. Chen, Catal. Commun. 2017, 90, 39–42.
- 44J. Li, Y. Chai, B. Liu, Y. Wu, X. Li, Z. Tang, Y. Liu, C. Liu, Appl. Catal. A 2014, 469, 434–441.
- 45Z. Xia, H. Liu, H. Lu, Z. Zhang, Y. Chen, Appl. Surf. Sci. 2017, 422, 905–912.
- 46Z. Lian, C. Si, F. Jan, S. Zhi, B. Li, ACS Catal. 2021, 11, 9279–9292.
- 47R. T. Vang, K. Honkala, S. Dahl, E. K. Vestergaard, J. Schnadt, E. Laegsgaard, B. S. Clausen, J. K. Norskov, F. Besenbacher, Nat. Mater. 2005, 4, 160–162.
- 48F. Dang, Z. Jiang, Y. Wang, J. Wan, C. Ai, M. Tian, Y. Jian, H. Xu, R. Albilali, J. Yu, C. He, ACS Catal. 2024, 14, 14031–14042.
- 49J. Zhu, M.-L. Yang, Y. Yu, Y.-A. Zhu, Z.-J. Sui, X.-G. Zhou, A. Holmen, D. Chen, ACS Catal. 2015, 5, 6310–6319.
- 50R. Wojcieszak, M. Zielinski, S. Monteverdi, M. M. Bettahar, J Colloid Interface Sci. 2006, 299, 238–248.
- 51J. A. Anderson, L. Daza, J. L. Fierro, T. Rodrigo, J. Chem. Soc. Faraday Trans. 1993, 89, 3651.
- 52X. Kang, H. Liu, M. Hou, X. Sun, H. Han, T. Jiang, Z. Zhang, B. Han, Angew. Chem. Int. Ed. 2016, 55, 1080–1084.
- 53L. Foppa, J. Dupont, Chem. Soc. Rev. 2015, 44, 1886–1897.
- 54P. G. Savva, K. Goundani, J. Vakros, K. Bourikas, C. Fountzoula, D. Vattis, A. Lycourghiotis, C. Kordulis, Appl. Catal. B 2008, 79, 199–207.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.