Elaborate Designed Three-Dimensional Hierarchical Conductive MOF/LDH/CF Nanoarchitectures for Superior Capacitive Deionization
Dr. Chang He
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou, 350118 P. R. China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorJun Zhang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorProf. Dionissios Mantzavinos
Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504 Patras, Greece
Search for more papers by this authorProf. Alexandros Katsaounis
Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504 Patras, Greece
Search for more papers by this authorDr. Duan-Hui Si
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Zhang Yan
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorDr. Hong-Yu Zhang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhu-Wu Jiang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorDr. Chang He
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Institute of Biology and Chemistry, Fujian University of Technology, Fuzhou, 350118 P. R. China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorJun Zhang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorProf. Dionissios Mantzavinos
Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504 Patras, Greece
Search for more papers by this authorProf. Alexandros Katsaounis
Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR, 26504 Patras, Greece
Search for more papers by this authorDr. Duan-Hui Si
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002 P. R. China
Search for more papers by this authorDr. Zhang Yan
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorDr. Hong-Yu Zhang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorCorresponding Author
Prof. Zhu-Wu Jiang
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118 P. R. China
Search for more papers by this authorAbstract
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal–organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a complex but promising strategy. Herein, the fabrication of elaborately designed three-dimensional hierarchical conductive MOF/LDH/CF nanoarchitectures (M–CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported. In this assembly, carbon fiber (CF) provides exceptional electrical conductivity facilitating rapid ion transfer and acts as a sturdy foundation for even distribution of NiCoCu-LDH nanosheets. Moreover, the well-ordered NiCoCu-LDH further acts as interior templates to create an interface by embedding c-MOFs and aligning two crystal lattice systems, facilitating the graft growth of c-MOFs/LDH heterostructures along the LDH nanosheet arrays on CF, leading to accelerated ion diffusion kinetics. Density functional theory (DFT) confirms the unique structure of M–CAT/LDH/CF promotes interfacial charge transfer from NiCoCu-LDH to M–CAT. This enhancement accelerates ion transfer, decreases ion migration energy, and leads to better ion diffusion kinetics and a smoother Cl− shuttle. Accordingly, the asymmetrical M–CAT/LDH/CF cell exhibited superior specific capacitance (315 F g−1), excellent salt adsorption capacity (147.8 mg g−1), rapid rate (21.1 mg g−1 min−1), and impressive cyclic stability (91.4 % retention rate). This work offers valuable insights for designing heterostructure electrode materials based on three-dimensional interconnected networks, contributing to further advancements in CDI technology.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202420295-sup-0001-misc_information.pdf2 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1M. Rodell, J. S. Famiglietti, D. N. Wiese, J. T. Reager, H. K. Beaudoing, F. W. Landerer, M.-H. Lo, Nature 2019, 565, 7739.
- 2C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li, B. A. Bryan, Nat. Commun. 2021, 12, 4667.
- 3T. Liu, J. Serrano, J. Elliott, X. Yang, W. Cathcart, Z. Wang, Z. He, G. Liu, Sci. Adv. 2020, 6, eaaz0906.
- 4S. Xing, N. Liu, Q. Li, M. Liang, X. Liu, H. Xie, F. Yu, J. Ma, Nat. Commun. 2024, 15, 4951.
- 5L. Luo, T. Liu, J. He, J. Ma, H.-Q. Yu, Environ. Sci. Technol. 2024, 58, 13120–13130.
- 6Z. He, C. J. Miller, Y. Zhu, Y. Wang, J. Fletcher, T. D. Waite, Water Res. 2024, 259, 121871.
- 7K. Sun, M. Tebyetekerwa, C. Wang, X. Wang, X. Zhang, X. S. Zhao, Adv. Funct. Mater. 2023, 33, 2213578.
- 8H. Li, S. Zhang, B. Liu, X. Li, N. Shang, X. Zhao, M. Eguchi, Y. Yamauchi, X. Xu, Chem. Sci. 2024, 15, 11540–11549.
- 9L. Bai, R. Xu, W. Wu, C. Ma, S. Li, H. Gao, D. Luo, B. Liu, S. Melhi, Y. Zhao, Z. Liu, Y. Yamauchi, X. Xu, J. Mater. Chem. A 2024, 12, 10676–10685.
- 10W. Shi, J. Ma, F. Gao, R. Dai, X. Su, Z. Wang, Environ. Sci. Technol. 2023, 57, 6342–6352.
- 11X. Liu, X. Xu, X. Xuan, W. Xia, G. Feng, S. Zhang, Z.-G. Wu, B. Zhong, X. Guo, K. Xie, Y. Yamauchi, J. Am. Chem. Soc. 2023, 145, 9242–9253.
- 12Z. Liu, D. Wang, H. Yang, L. Feng, X. Xu, W. Si, Y. Hou, G. Wen, R. Zhang, J. Qiu, Angew. Chem. Int. Ed. 2024, e202409204.
- 13X. Zhang, M. Pang, Y. Wei, F. Liu, H. Zhang, H. Zhou, Water Res. 2024, 251, 121147.
- 14L. Zhang, Y. Wang, Y. Cai, R. Fang, S. Huang, Y. Zhao, S. Zhang, Chem. Eng. J. 2023, 478, 147270.
- 15Y. Cai, G. Zhao, Q. Yuan, J. Zhao, Chem. Eng. J. 2024, 484, 149491.
- 16S. P. Hong, H. Yoon, J. Lee, C. Kim, S. Kim, J. Lee, C. Lee, J. Yoon, J. Colloid Interface Sci. 2020, 564, 1–7.
- 17J. Lei, Y. Xiong, F. Yu, J. Ma, Chem. Eng. J. 2022, 437, 135381.
- 18Q. Yang, Z. Li, B. Xu, Adv. Funct. Mater. 2023, 33, 2300149.
- 19Y. Guo, X. Hong, Y. Wang, Q. Li, J. Meng, R. Dai, X. Liu, L. He, L. Mai, Adv. Funct. Mater. 2019, 29, 1809004.
- 20W. Guo, C. Yu, S. Li, J. Yang, Z. Liu, C. Zhao, H. Huang, M. Zhang, X. Han, Y. Niu, J. Qiu, Small 2017, 13, 1701288.
- 21A. Aziz, M. Asif, G. Ashraf, T. Iftikhar, J. Hu, F. Xiao, S. Wang, J. Hazard. Mater. 2022, 422, 126907.
- 22X. Jiang, B. Kang, X. Zhang, F. Yan, X. Zhang, F. Cao, Y. Chen, Carbon 2024, 225, 119114.
- 23C. He, J. Liang, Y.-H. Zou, J.-D. Yi, Y.-B. Huang, R. Cao, Natl. Sci. Rev. 2022, 9, nwab157.
- 24J. Liang, Q. Wu, Y.-B. Huang, R. Cao, EnergyChem 2021, 3, 100064.
- 25C. He, Y.-H. Zou, D.-H. Si, Z.-A. Chen, T.-F. Liu, R. Cao, Y.-B. Huang, Nat. Commun. 2023, 14, 3317.
- 26J.-D. Yi, R. Xie, Z.-L. Xie, G.-L. Chai, T.-F. Liu, R.-P. Chen, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed. 2020, 59, 23641–23648.
- 27J.-D. Yi, D.-H. Si, R. Xie, Q. Yin, M.-D. Zhang, Q. Wu, G.-L. Chai, Y.-B. Huang, R. Cao, Angew. Chem. Int. Ed. 2021, 60, 17108–17114.
- 28J. Yin, N. Li, M. Liu, Z. Li, X. Wang, M. Cheng, M. Zhong, W. Li, Y. Xu, X.-H. Bu, Adv. Funct. Mater. 2023, 33, 2211950.
- 29Z.-H. Zhao, J.-R. Huang, P.-Q. Liao, X.-M. Chen, J. Am. Chem. Soc. 2023, 145, 26783–26790.
- 30Y.-X. Shi, Y. Wu, S.-Q. Wang, Y.-Y. Zhao, T. Li, X.-Q. Yang, T. Zhang, J. Am. Chem. Soc. 2021, 143, 4017–4023.
- 31J. Ma, L. Fan, X. Wang, L. Li, Y. Zhang, G. Zhao, B. Chai, J. Gao, Surf. Interfaces 2024, 54, 105174.
- 32J. Liu, X. Song, T. Zhang, S. Liu, H. Wen, L. Chen, Angew. Chem. Int. Ed. 2021, 60, 5612–5624.
- 33L. Niu, T. Wu, M. Chen, L. Yang, J. Yang, Z. Wang, A. A. Kornyshev, H. Jiang, S. Bi, G. Feng, Adv. Mater. 2022, 34, 2200999.
- 34W.-H. Li, K. Ding, H.-R. Tian, M.-S. Yao, B. Nath, W.-H. Deng, Y. Wang, G. Xu, Adv. Funct. Mater. 2017, 27, 1702067.
- 35R. Zhu, L. Liu, G. Zhang, Y. Zhang, Y. Jiang, H. Pang, Nano Energy 2024, 122, 109333.
- 36H. Roh, D.-H. Kim, Y. Cho, Y.-M. Jo, J. A. del Alamo, H. J. Kulik, M. Dincă, A. Gumyusenge, Adv. Mater. 2024, 36, 2312382.
- 37A. Raja, N. Son, Y.-I. Kim, M. Kang, J. Colloid Interface Sci. 2023, 647, 104–114.
- 38M. Feng, C. Xing, Y. Jin, X. Feng, Y. Zhang, B. Wang, J. Am. Chem. Soc. 2024, 146, 32883–32905.
- 39Q. Fu, X. Wang, J. Han, J. Zhong, T. Zhang, T. Yao, C. Xu, T. Gao, S. Xi, C. Liang, L. Xu, P. Xu, B. Song, Angew. Chem. Int. Ed. 2021, 60, 259–267.
- 40J. Li, Y. Qin, Y. Lei, S. Li, L. Li, B. Ouyang, E. Kan, W. Zhang, Inorg. Chem. Front. 2022, 9, 5335–5346.
- 41S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme, C. Xu, ACS Nano 2019, 13, 9578–9586.
- 42J. M. Wrogemann, M. J. Lüther, P. Bärmann, M. Lounasvuori, A. Javed, M. Tiemann, R. Golnak, J. Xiao, T. Petit, T. Placke, M. Winter, Angew. Chem. Int. Ed. 2023, 62, e202303111.
- 43H. Yang, Z. Chen, P. Guo, B. Fei, R. Wu, Appl. Catal. B 2020, 261, 118240.
- 44D. Wang, S. Ostresh, D. Streater, P. He, J. Nyakuchena, Q. Ma, X. Zhang, J. Neu, G. W. Brudvig, J. Huang, Angew. Chem. Int. Ed. 2023, 62, e202309505.
- 45H. Wu, W. Zhang, S. Kandambeth, O. Shekhah, M. Eddaoudi, H. N. Alshareef, Adv. Energy Mater. 2019, 9, 1900482.
- 46S. Yang, Y. Guo, P. Zhao, H. Jiang, H. Shen, Z. Chen, L. Jiang, X. Xue, Q. Zhang, H. Zhang, ACS Catal. 2024, 14, 449–462.
- 47Y. Hou, Y.-L. Liang, P.-C. Shi, Y.-B. Huang, R. Cao, Appl. Catal. B 2020, 271, 118929.
- 48Q.-J. Wu, D.-H. Si, Q. Wu, Y.-L. Dong, R. Cao, Y.-B. Huang, Angew. Chem. Int. Ed. 2023, 62, e202215687.
- 49K. W. Nam, S. S. Park, R. dos Reis, V. P. Dravid, H. Kim, C. A. Mirkin, J. F. Stoddart, Nat. Commun. 2019, 10, 4948.
- 50Y. Zhao, X. F. Lu, Z.-P. Wu, Z. Pei, D. Luan, X. W. (David) Lou, Adv. Mater. 2023, 35, 2207888.
- 51Y. Zou, Y. Yan, Q. Xue, C. Zhang, T. Bao, X. Zhang, L. Yuan, S. Qiao, L. Song, J. Zou, C. Yu, C. Liu, Angew. Chem. Int. Ed. 2024, e202409799.
- 52W. Cheng, S. Xi, Z.-P. Wu, D. Luan, X. W. (David) Lou, Sci. Adv. 2021, 7, eabk0919.
- 53P. Liu, T. Yan, L. Shi, H. S. Park, X. Chen, Z. Zhao, D. Zhang, J. Mater. Chem. A 2017, 5, 13907–13943.
- 54B. Zhang, A. Boretti, S. Castelletto, Chem. Eng. J. 2022, 435, 134959.
- 55N. Nobakht, S. A. Etghani, M. Hosseini, S. H. Aboutalebi, J. Energy Chem. 2024, 97, 388–418.
- 56Z. Yuan, L. Wang, D. Li, J. Cao, W. Han, ACS Nano 2021, 15, 7439–7450.
- 57H. Zhang, F. Zhang, Y. Wei, Q. Miao, A. Li, Y. Zhao, Y. Yuan, N. Jin, G. Li, ACS Appl. Mater. Interf. 2021, 13, 21217–21230.
- 58Z.-W. Jiang, J. Zhang, D. Mantzavinos, A. Katsaounis, D.-H. Si, X. Yao, R.-G. Weng, C. He, Chem. Eng. J. 2024, 502, 158120.
- 59Y. Wang, Q. Pan, Y. Qiao, X. Wang, D. Deng, F. Zheng, B. Chen, J. Qiu, Adv. Mater. 2023, 35, 2210871.
- 60R. Abazari, S. Sanati, W. K. Fan, M. Tahir, S. Nayak, K. Parida, M. El-Shahat, R. M. Abdelhameed, D. S. Nesterov, A. M. Kirillov, J. Qian, Coord. Chem. Rev. 2025, 523, 216256.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.