Selenium-Substitution Strategy for Enhanced Mobility, Tunable Bandgap, and Improved Electrochemical Energy Storage in Semiconducting Conjugated Coordination Polymers
Sha Wu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Dr. Xing Huang
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
These authors contributed equally to this work
Search for more papers by this authorDr. Shuai Fu
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Search for more papers by this authorZe Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSiping Yin
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenkai Liao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Mingchao Wang
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorDr. Yang Lu
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Search for more papers by this authorProf. Mischa Bonn
Max Planck Institute for Polymer Research, Mainz, 55128 Germany
Search for more papers by this authorDr. Yimeng Sun
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Max Planck Institute of Microstructure Physics, Halle Saale, 06120 Germany
Search for more papers by this authorCorresponding Author
Prof. Wei Xu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSha Wu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
These authors contributed equally to this work
Search for more papers by this authorCorresponding Author
Dr. Xing Huang
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
These authors contributed equally to this work
Search for more papers by this authorDr. Shuai Fu
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Search for more papers by this authorZe Li
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorSiping Yin
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorWenkai Liao
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorDr. Mingchao Wang
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055 China
Search for more papers by this authorDr. Yang Lu
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Search for more papers by this authorProf. Mischa Bonn
Max Planck Institute for Polymer Research, Mainz, 55128 Germany
Search for more papers by this authorDr. Yimeng Sun
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
Search for more papers by this authorCorresponding Author
Prof. Xinliang Feng
Center for Advancing Electronics Dresden (cfaed), Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062 Germany
Max Planck Institute of Microstructure Physics, Halle Saale, 06120 Germany
Search for more papers by this authorCorresponding Author
Prof. Wei Xu
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
University of Chinese Academy of Sciences, Beijing, 100049 China
Search for more papers by this authorAbstract
Conjugated coordination polymers (c-CPs), a novel class of organic–inorganic hybrid materials, are distinguished by their unique structural characteristics and exceptional charge transport properties. The electronic properties of these materials are critically determined by the constituting coordination atoms, with electron-rich selenol ligands emerging as promising candidates for constructing high-mobility semiconducting c-CPs. Despite their potential, c-CPs incorporating selenium-substituted ligands remain scarce due to the synthetic challenges associated with both the ligands and the coordination polymers. In this study, we successfully synthesized a new tetraselenol-hydroxyquinone (TSHQ) ligand using a “4+2” design strategy and developed a semiconducting three-dimensional Ag−Se coordination polymer, Ag4TSHQ. Ag4TSHQ exhibits room-temperature electrical conductivity of up to 1.6 S/m and shares the same structural topology as Ag4TTHQ (TTHQ=tetrathiol-hydroxyquinone), enabling precise band gap modulation from 0.6 eV to 1.5 eV via a mixed-ligand approach. Time-resolved terahertz spectroscopy reveals that the charge mobility of Ag4TSHQ in the dc limit is ~350 cm2/V ⋅ s, which is twice that of its sulfur counterpart, Ag4TTHQ. Furthermore, our evaluations of their electrochemical energy storage capabilities demonstrate that Ag4TSHQ effectively utilizes its redox potential, achieving a remarkable specific capacitance of up to 340 F/g-significantly outperforming Ag4TTHQ, which has a capacitance of 294 F/g. These findings underscore the potential of selenium-ligand-based c-CPs for optoelectronic applications and energy storage technologies.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202419865-sup-0001-misc_information.pdf1.4 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
- 1aG. Skorupskii, K. N. Le, D. L. M. Cordova, L. Yang, T. Chen, C. H. Hendon, M. Q. Arguilla, M. Dinca, Proc. Natl. Acad. Sci. USA 2022, 119, e2205127119;
- 1bS. Saha, K. S. Ananthram, N. Hassan, A. Ugale, K. Tarafder, N. Ballav, Nano Lett. 2023, 23, 9326–9332.
- 2
- 2aS. Zhou, T. Liu, M. Stromme, C. Xu, Angew. Chem. Int. Ed. 2024, 63, e202318387;
- 2bD. Sheberla, J. C. Bachman, J. S. Elias, C. J. Sun, Y. Shao-Horn, M. Dinca, Nat. Mater. 2017, 16, 220–224;
- 2cM. G. Campbell, D. Sheberla, S. F. Liu, T. M. Swager, M. Dinca, Angew. Chem. Int. Ed. 2015, 54, 4349–4352.
- 3
- 3aX. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, Nat. Commun. 2015, 6, 7408;
- 3bX. Huang, Y. Qiu, Y. Wang, L. Liu, X. Wu, Y. Liang, Y. Cui, Y. Sun, Y. Zou, J. Zhu, W. Fang, J. Sun, W. Xu, D. Zhu, Angew. Chem. Int. Ed. 2020, 59, 22602–22609;
- 3cX. Huang, H. Li, Z. Tu, L. Liu, X. Wu, J. Chen, Y. Liang, Y. Zou, Y. Yi, J. Sun, W. Xu, D. Zhu, J. Am. Chem. Soc. 2018, 140, 15153–15156;
- 3dY. Jin, Y. Fang, Z. Li, X. Hao, F. He, B. Guan, D. Wang, S. Wu, Y. Li, C. Liu, X. Dai, Y. Zou, Y. Sun, W. Xu, Nat. Commun. 2022, 13, 6294.
- 4
- 4aX. Huang, S. Fu, C. Lin, Y. Lu, M. Wang, P. Zhang, C. Huang, Z. Li, Z. Liao, Y. Zou, J. Li, S. Zhou, M. Helm, P. St. Petkov, T. Heine, M. Bonn, H. I. Wang, X. Feng, R. Dong, J. Am. Chem. Soc. 2023, 145, 2430–2438;
- 4bK. Fan, J. Li, Y. Xu, C. Fu, Y. Chen, C. Zhang, G. Zhang, J. Ma, T. Zhai, C. Wang, J. Am. Chem. Soc. 2023, 145, 12682–12690;
- 4cY. Luo, J. Liu, L. Zhang, Angew. Chem. Int. Ed. 2022, 61, e202209458;
- 4dT. Chen, J. H. Dou, L. Yang, C. Sun, J. J. Oppenheim, J. Li, M. Dinca, J. Am. Chem. Soc. 2022, 144, 5583–5593;
- 4eN. Lahiri, N. Lotfizadeh, R. Tsuchikawa, V. V. Deshpande, J. Louie, J. Am. Chem. Soc. 2017, 139, 19–22.
- 5
- 5aL. S. Xie, G. Skorupskii, M. Dinca, Chem. Rev. 2020, 120, 8536–8580;
- 5bJ. Liu, G. Xing, L. Chen, Acc. Chem. Res. 2024, 57, 1032–1045;
- 5cD. Mucke, I. Cooley, B. Liang, Z. Wang, S. Park, R. Dong, X. Feng, H. Qi, E. Besley, U. Kaiser, Nano Lett. 2024, 24, 3014–3020.
- 6
- 6aX. Huang, S. Zhang, L. Liu, L. Yu, G. Chen, W. Xu, D. Zhu, Angew. Chem. Int. Ed. 2018, 57, 146–150;
- 6bP. Perlepe, I. Oyarzabal, L. Voigt, M. Kubus, D. N. Woodruff, S. E. Reyes-Lillo, M. L. Aubrey, P. Negrier, M. Rouzieres, F. Wilhelm, A. Rogalev, J. B. Neaton, J. R. Long, C. Mathoniere, B. Vignolle, K. S. Pedersen, R. Clerac, Nat. Commun. 2022, 13, 5766.
- 7J. J. Song, H. Liu, Z. Zhao, X. Y. Guo, C. K. Liu, S. Griggs, A. Marks, Y. Zhu, H. K. Law, I. Mcculloch, F. Yan, Sci. Adv. 2023, 9, eadd9627.
- 8T. Deng, X. Yong, W. Shi, C. K. Gan, W. Li, K. Hippalgaonkar, J. C. Zheng, X. Wang, S. W. Yang, J. S. Wang, G. Wu, Adv. Energy Mater. 2019, 5, 1800892.
- 9
- 9aD. Feng, T. Lei, M. R. Lukatskaya, J. Park, Z. Huang, M. Lee, L. Shaw, S. Chen, A. A. Yakovenko, A. Kulkarni, J. Xiao, K. Fredrickson, J. B. Tok, X. Zou, Y. Cui, Z. Bao, Nat. Energy 2018, 3, 30–36;
- 9bX. Huang, H. Yao, Y. Cui, W. Hao, J. Zhu, W. Xu, D. Zhu, ACS Appl. Mater. Interfaces 2017, 9, 40752–40759.
- 10K. Fan, C. Zhang, Y. Chen, Y. Wu, C. Wang, Chem 2021, 7, 1224–1243.
- 11J. Park, A. C. Hinckley, Z. Huang, D. Feng, A. A. Yakovenko, M. Lee, S. Chen, X. Zou, Z. Bao, J. Am. Chem. Soc. 2018, 140, 14533–14537.
- 12T. Chen, J. H. Dou, L. Yang, C. Sun, N. J. Libretto, G. Skorupskii, J. T. Miller, M. Dinca, J. Am. Chem. Soc. 2020, 142, 12367–12373.
- 13T. Kusamoto, H. Nishihara, Coord. Chem. Rev. 2019, 380, 419–439.
- 14
- 14aA. M. Ballantyne, L. Chen, J. Nelson, D. D. C. Bradley, Y. Astuti, A. Maurano, C. G. Shuttle, J. R. Durrant, M. Heeney, W. Duffy, I. McCulloch, Adv. Mater. 2007, 19, 4544–4547;
- 14bA. J. Kronemeijer, E. Gili, M. Shahid, J. Rivnay, A. Salleo, M. Heeney, H. Sirringhaus, Adv. Mater. 2012, 24, 1558–1565.
- 15H. Kobayashi, A. Kobayashi, H. Tajima, Chem. Asian J. 2011, 6, 1688–1704.
- 16J. Hollinger, D. Gao, D. S. Seferos, Isr. J. Chem. 2014, 54, 440–453.
- 17
- 17aY. Cui, J. Yan, Z. Chen, J. Zhang, Y. Zou, Y. Sun, W. Xu, D. Zhu, Adv. Sci. 2019, 6, 1802235;
- 17bY. Cui, J. Yan, Z. Chen, W. Xing, C. Ye, X. Li, Y. Zou, Y. Sun, C. Liu, W. Xu, D. Zhu, iScience 2020, 23, 100812.
- 18X. Huang, Y. Li, S. Fu, C. Ma, Y. Lu, M. Wang, P. Zhang, Z. Li, F. He, C. Huang, Z. Liao, Y. Zou, S. Zhou, M. Helm, P. St. Petkov, H. I. Wang, M. Bonn, J. Li, W. Xu, R. Dong, X. Feng, Angew. Chem. Int. Ed. 2024, 63, e202320091.
- 19
- 19aY. Jin, Y. Li, Y. Sun, M. Zhu, Z. Li, L. Liu, Y. Zou, C. Liu, Y. Sun, W. Xu, J. Mater. Chem. C 2022, 10, 2711–2717;
- 19bM. Choe, J. Y. Koo, I. Park, H. Ohtsu, J. H. Shim, H. C. Choi, S. S. Park, J. Am. Chem. Soc. 2022, 144, 16726–16731.
- 20
- 20aM. Wang, R. Dong, X. Feng, Chem. Soc. Rev. 2022, 51, 793–794;
- 20bA. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai, F. El Gabaly, H. P. Yoon, F. Leonard, M. D. Allendorf, Science 2014, 343, 66–69.
- 21M. T. Dylla, J. J. Kuo, I. Witting, G. J. Snyder, Adv. Mater. Interfaces 2019, 6, 1900222.
- 22
- 22aR. K. Dubey, M. Marongiu, S. Fu, G. Wen, M. Bonn, H. I. Wang, M. Melle-Franco, A. Mateo-Alonso, Chem. 2023, 9, 2983–2996;
- 22bY. Lu, Z. Hu, P. Petkov, S. Fu, H. Qi, C. Huang, Y. Liu, X. Huang, M. Wang, P. Zhang, U. Kaiser, M. Bonn, H. I. Wang, P. Samorì, E. Coronado, R. Dong, X. Feng, J. Am. Chem. Soc. 2024, 146, 2574–2582;
- 22cS. Wang, Z. Xie, D. Zhu, S. Fu, Y. Wu, H. Yu, C. Lu, P. Zhou, M. Bonn, H. I. Wang, Q. Liao, H. Xu, X. Chen, C. Gu, Nat. Commun. 2023, 14, 6891;
- 22dR. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, M. Bonn, Rev. Mod. Phys. 2011, 83, 543–586.
- 23T. L. Cocker, D. Baillie, M. Buruma, L. V. Titova, R. D. Sydora, F. Marsiglio, F. A. Hegmann, Phys. Rev. B 2017, 96, 205439.
- 24M. Abdullah, P. John, S. Manzoor, M. I. Ghouri, H. H. Hegazy, A. H. Chugtai, S. Aman, A. M. Shawky, M. N. Ashiq, T. A. Taha, J. Energy Storage 2022, 56, 105929.
- 25Y. Jin, S. Wu, Y. Sun, Z. Chang, Z. Li, Y. Sun, W. Xu, Mater. Horiz. 2023, 10, 3821–3829.
- 26
- 26aA. Altomare, G. Campi, C. Cuocci, L. Eriksson, C. Giacovazzo, A. Moliterni, R. Rizzi, P. E. Werner, J. Appl. Crystallogr. 2009, 42, 768–775;
- 26bA. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero, A. Falcicchio, J. Appl. Crystallogr. 2013, 46, 1231–1235.
- 27V. Petříček, M. Dušek, L. Palatinus, Z. Cryst. Mater. 2014, 229, 345–352.
- 28L. Palatinus, G. Chapuis, J. Appl. Crystallogr. 2007, 40, 786–790.
- 29J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865–3868.
- 30J. Klimeš, D. R. Bowler, A. Michaelides, Phys. Rev. B 2011, 83, 195131.
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.