Harnessing Multi-Center-2-Electron Bonds for Carbene Metal-Hydride Nanocluster Catalysis
Quentin Pessemesse
Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
These authors contributed equally
Search for more papers by this authorDr. Skyler D. Mendoza
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
These authors contributed equally
Search for more papers by this authorProf. Dr. Jesse L. Peltier
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Departments of Chemistry & Chemical Biology, and Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115 United States
These authors contributed equally
Search for more papers by this authorElguja Gojiashvili
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 United States
Search for more papers by this authorDr. Anne K. Ravn
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorDr. Jan Lorkowski
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Search for more papers by this authorDr. Milan Gembicky
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Search for more papers by this authorDr. Sourav S. Bera
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorCorresponding Author
Dr. Pierre-Adrien Payard
Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Keary M. Engle
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Rodolphe Jazzar
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 United States
Search for more papers by this authorQuentin Pessemesse
Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
These authors contributed equally
Search for more papers by this authorDr. Skyler D. Mendoza
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
These authors contributed equally
Search for more papers by this authorProf. Dr. Jesse L. Peltier
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Departments of Chemistry & Chemical Biology, and Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115 United States
These authors contributed equally
Search for more papers by this authorElguja Gojiashvili
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 United States
Search for more papers by this authorDr. Anne K. Ravn
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorDr. Jan Lorkowski
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Search for more papers by this authorDr. Milan Gembicky
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Search for more papers by this authorDr. Sourav S. Bera
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorCorresponding Author
Dr. Pierre-Adrien Payard
Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS., 1 rue Victor Grignard, Villeurbanne Cedex, France
Search for more papers by this authorCorresponding Author
Prof. Dr. Keary M. Engle
Department of Chemistry, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, CA 92037 United States
Search for more papers by this authorCorresponding Author
Prof. Dr. Rodolphe Jazzar
UCSD-CNRS Joint Research Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093 United States
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182 United States
Search for more papers by this authorAbstract
N-Heterocyclic carbene (NHC) ligands possess the ability to stabilize metal-based nanomaterials for a broad range of applications. With respect to metal-hydride nanomaterials, however, carbenes are rare, which is surprising if one considers the importance of metal-hydride bonds across the chemical sciences. In this study, we introduce a bottom-up approach that leverages preexisting metal-metal m-center-n-electron (mc-ne) bonds to access a highly stable cyclic(alkyl)amino carbene (CAAC) copper-hydride nanocluster, [(CAAC)6Cu14H12][OTf]2 with superior stability compared to Stryker's reagent, a popular commercial phosphine-based copper hydride catalyst. Density functional theory (DFT) calculations reveal that the enhanced stability stems from hydride-to-ligand backbonding with the π-accepting carbene. This new cluster emerges as an efficient and selective copper-hydride pre-catalyst, thereby providing a bench-stable alternative for catalytic applications.
Conflict of Interests
The authors declare no conflict of interest.
Open Research
Data Availability Statement
The data that support the findings of this study are available in the supplementary material of this article.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
ange202419537-sup-0001-misc_information.pdf11.9 MB | Supporting Information |
ange202419537-sup-0001-mpg_and_glb_files.zip21 MB | Supporting Information |
ange202419537-sup-0001-Xray_files.zip772.5 KB | Supporting Information |
ange202419537-sup-0001-XYZ_files.zip12.5 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1R. Mohtadi, S. Orimo, Nat. Rev. Mater. 2017, 2, 16091.
- 2A. Schneemann, J. L. White, S. Kang, S. Jeong, L. F. Wan, E. S. Cho, T. W. Heo, D. Prendergast, J. J. Urban, B. C. Wood, M. D. Allendorf, V. Stavila, Chem. Rev. 2018, 118, 10775–10839.
- 3R. Y. Liu, S. L. Buchwald, Acc. Chem. Res. 2020, 53, 1229–1243.
- 4D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, Chem. Rev. 2016, 116, 8693–8749.
- 5J. R. Norton, J. Sowa, Chem. Rev. 2016, 15, 8315–8317.
- 6B. H. Lipshutz, B. A. Frieman, Angew. Chem. Int. Ed. 2005, 44, 6345–6348.
- 7K. M. Waldie, A. L. Ostericher, M. R. Reineke, A. F. Sasayama, C. P. Kubiak, ACS Catal. 2018, 8, 1313–1324.
- 8A. W. Beamer, J. A. Buss, J. Am. Chem. Soc. 2023, 23, 12911–12919.
- 9G. G. Hlatky, R. H. Crabtree, Coord. Chem. Rev. 1985, 65, 1–48.
- 10S. A. Bezman, M. R. Churchill, J. A. Osborn, J. Wormald, J. Am. Chem. Soc. 1971, 93, 2063–2065.
- 11W. S. Mahoney, D. M. Brestensky, J. M. Stryker, J. Am. Chem. Soc. 1988, 110, 291–293.
- 12C. M. Zall, J. C. Linehan, A. M. Appel, J. Am. Chem. Soc. 2016, 138, 9968–9977.
- 13Y. Xi, J. F. Hartwig, J. Am. Chem. Soc. 2017, 139, 12758–12772.
- 14A. J. Jordan, G. Lalic, J. P. Sadighi, Chem. Rev. 2016, 15, 8318–8372.
- 15
- 15aC. Deutsch, N. Krause, B. H. Lipshutz, Chem. Rev. 2008, 8, 2916–2927;
- 15bG. Lonardi, R. Parolin, G. Licini, M. Orlandi, Angew. Chem. Int. Ed. 2023, 62, e202216649.
- 16A. J. Edwards, R. S. Dhayal, P. K. Liao, J. H. Liao, M. H. Chiang, R. O. Piltz, S. Kahlal, J. Y. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2014, 53, 7214–7218.
- 17S. Lee, M. S. Bootharaju, G. Deng, S. Malola, W. Baek, H. Häkkinen, N. Zheng, T. Hyeon, J. Am. Chem. Soc. 2020, 142, 13974–13981.
- 18C. Sun, B. K. Teo, C. Deng, J. Lin, G.-G. Luo, C.-H. Tung, D. Sun, Coord. Chem. Rev. 2021, 427, 213576.
- 19A. J. Hoskin, D. W. Stephan, Coord. Chem. Rev. 2002, 233–234, 107–129.
- 20M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510, 485–496.
- 21P. Bellotti, M. Koy, M. N. Hopkinson, F. Glorius, Nat. Chem. Rev. 2021, 5, 711–725.
- 22L. Falivene, Z. Cao, A. Petta, L. Serra, A. Poater, R. Oliva, V. Scarano, L. Cavallo, Nat. Chem. 2019, 11, 872–879.
- 23D. Munz, Organometallics 2018, 37, 275–289.
- 24H. V. Huynh, Chem. Rev. 2018, 118, 9457–9492.
- 25T. G. Carroll, D. E. Ryan, J. D. Erickson, R. M. Bullock, B. L. Tran, J. Am. Chem. Soc. 2022, 144, 13865–13873.
- 26E. A. Romero, T. Zhao, R. Nakano, X. Hu, Y. Wu, R. Jazzar, G. Bertrand, Nat. Catal. 2018, 1, 743–747.
- 27C. A. Smith, M. R. Narouz, P. A. Lummis, I. Singh, A. Nazemi, C. H. Li, C. M. Crudden, Chem. Rev. 2019, 119, 4986–5056.
- 28E. L. Albright, T. I. Levchenko, V. K. Kulkarni, A. I. Sullivan, J. F. DeJesus, S. Malola, S. Takano, M. Nambo, K. Stamplecoskie, H. Häkkinen, T. Tsukuda, C. M. Crudden, J. Am. Chem. Soc. 2024, 146, 5759–5780.
- 29M. R. Narouz, K. M. Osten, P. J. Unsworth, R. W. Y. Man, K. Salorinne, S. Takano, R. Tomihara, S. Kaappa, S. Malola, C. T. Dinh, J. D. Padmos, K. Ayoo, P. J. Garrett, M. Nambo, J. H. Horton, E. H. Sargent, H. Hakkinen, T. Tsukuda, C. M. Crudden, Nat. Chem. 2019, 11, 419–425.
- 30J. Ren, M. Koy, H. Osthues, B. S. Lammers, C. Gutheil, M. Nyenhuis, Q. Zheng, Y. Xiao, L. Huang, A. Nalop, Q. Dai, H. J. Gao, H. Mönig, N. L. Doltsinis, H. Fuchs, F. Glorius, Nat. Chem. 2023, 15, 1737–1744.
- 31
- 31aH. Shen, G. Tian, Z. Xu, L. Wang, Q. Wu, Y. Zhang, B. K. Teo, N. Zheng, Coord. Chem. Rev. 2022, 458, 214425;
- 31bL. M. Martinez-Prieto, B. Chaudret, Acc. Chem. Res. 2018, 51, 376–384.
- 32X.-H. Ma, J. Li, P. Luo, J.-H. Hu, Z. Han, X.-Y. Dong, G. Xie, S.-Q. Zang, Nat. Commun. 2023, 14, 4121.
- 33
- 33aA. J. Edwards, R. S. Dhayal, P. K. Liao, J. H. Liao, M. H. Chiang, R. O. Piltz, S. Kahlal, J. Y. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2014, 53, 7214–7218;
- 33bS.-F. Yuan, H.-W. Luyang, Z. Lei, X.-K. Wan, J.-J. Lia, Q.-M. Wang, Chem. Commun. 2021, 57, 4315–4318.
- 34H. Shen, L. Wang, O. López-Estrada, C. Hu, Q. Wu, D. Cao, S. Malola, B. K. Teo, H. Häkkinen, N. Zheng, Nano Res. 2021, 14, 3303–3308.
- 35A. W. Beamer, J. A. Buss, J. Am. Chem. Soc. 2023, 145, 12911–12919.
- 36M. Peplow, Nature. 2023, https://doi.org/10.1038/d41586-023–03745-5.
- 37M. Peplow, Nature. 2023, https://doi.org/10.1038/d41586-023–03956-w.
- 38J. L. Peltier, M. Soleilhavoup, D. Martin, R. Jazzar, G. Bertrand, J. Am. Chem. Soc. 2020, 142, 16479–16485.
- 39J. C. Green, M. L. H. Green, G. Parkin, Chem. Commun. 2012, 48, 11481–11503.
- 40B. Yoon, W. D. Luedtke, R. N. Barnett, J. Gao, A. Desireddy, B. E. Conn, T. Bigioni, U. Landman, Nat. Mater. 2014, 13, 807–811.
- 41
- 41aZ. Wu, Q. Yao, S. Zang, J. Xie, ACS Materials Lett. 2019, 1, 237–248;
- 41bC. Lepetit, P. Fau, K. Fajerwerg, M. L. Kahn, B. Silvi, Coord. Chem. Rev. 2017, 345, 150.
- 42P. Melichar, D. Hnyk, J. Fanfrlík, Phys. Chem. Chem. Phys. 2018, 20, 4666–4675.
- 43R. S. Dhayal, J. H. Liao, Y. C. Liu, M. H. Chiang, S. Kahlal, J. Y. Saillard, C. W. Liu, Angew. Chem. Int. Ed. 2015, 54, 3702–3706.
- 44S. R. Dhayal, W. E. van Zyl, C. W. Liu, Acc. Chem. Res. 2016, 49, 86–95.
- 45
- 45aV. Lavallo, Y. Canac, C. Prasang, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2005, 44, 5705–5709;
- 45bR. Jazzar, R. D. Dewhurst, J.-B. Bourg, B. Donnadieu, Y. Canac, G. Bertrand, Angew. Chem. Int. Ed. 2007, 46, 2899–2902;
- 45cF. Vermersch, L. Oliveira, J. Hunter, M. Soleilhavoup, R. Jazzar, G. Bertrand, J. Org. Chem. 2022, 87, 3511–3518;
- 45dA. Madron du Vigné, N. Cramer, Organometallics 2022, 41, 2731–2741.
- 46M. Melaimi, R. Jazzar, M. Soleilhavoup, G. Bertrand, Angew. Chem. Int. Ed. 2017, 56, 10046–10068.
- 47S. Kundu, S. Sinhababu, V. Chandrasekhar, H. W. Roesky, Chem. Sci. 2019, 10, 4727–4741.
- 48R. Jazzar, M. Soleilhavoup, G. Bertrand, Chem. Rev. 2020, 120, 4141–4168.
- 49T. Shima, Y. Luo, T. Stewart, R. Bau, G. J. McIntyre, S. A. Mason, Z. Hou, Nat. Chem. 2011, 3, 814–820.
- 50G. D. Frey, B. Donnadieu, M. Soleilhavoup, G. Bertrand, Chem. Asian J. 2011, 6, 402–405.
- 51G. Knizia, J. Chem. Theory Comput. 2013, 9, 4834–4843.
- 52R. F. W. Bader, Chem. Rev. 1991, 91, 893–928.
- 53J. Zheng, Z. Lu, K. Wu, G.-H. Ning, D. Li, Chem. Rev. 2020, 17, 9675–9742.
- 54R. W. G. Wyckoff, Cryst.Struct. 1963, 1, 7–83.
- 55E. L. Bennett, P. J. Murphy, S. Imberti, S. F. Parker, Inorg. Chem. 2014, 53, 2963–2967.
- 56J. Lorkowski, R. M. Serrato, M. Gembicky, M. Mauduit, G. Bertrand, R. Jazzar, Eur. J. Inorg. Chem. 2023, 26, e202300074.
- 57S. Liu, M. S. Eberhart, J. R. Norton, X. Yin, M. C. Neary, D. W. Paley, J. Am. Chem. Soc. 2017, 139, 7685–7688.
- 58Selected early state-of-the-art examples:
- 58aB. H. Lipshutz, J. Keith, P. Papa, R. Vivian, Tetrahedron Lett. 1998, 39, 4627–4630;
- 58bD. H. Appella, Y. Moritani, R. Shintani, E. M. Ferreira, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 9473–9474.
- 59Y. Gao, S. Yazdani, A. Kendrick IV, G. P. Junor, T. Kang, D. B. Grotjahn, G. Bertrand, R. Jazzar, K. M. Engle, Angew. Chem. Int. Ed. 2021, 60, 19871–19878.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.